Абстрактная теория групп

Понятие абстрактной группы. Свойства алгебраических операций. Реализация абстрактной группы как группы преобразований. Доказательство теоремы Коши, Лагранжа. Теорема о подгруппах конечной циклической группы. Смежные классы, классы сопряженных элементов.

Подобные документы

  • Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

    контрольная работа, добавлен 16.06.2010

  • Разложение подстановок в произведение циклов с непересекающимися орбитами. Исследование наборов состоящих из одного и того же количества элементов, отличающихся только порядком следования элементов. Рассмотрение симметрической группы третьей степени.

    курсовая работа, добавлен 23.04.2024

  • Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.

    лекция, добавлен 06.04.2018

  • Понятие интеграла движения. Независимые интегралы движения для замкнутой системы. Асимптотическая аддитивность интегралов движения. Формулировка, доказательство теоремы Нётер. Некоторые замечания относительно теоремы Нётер. Сохранение аддитивной величины.

    контрольная работа, добавлен 19.11.2017

  • Теорема Пифагора - жемчужина античной математики. Не алгебраические и алгебраические доказательства теоремы. Математические трактаты Древнего Китая. Сравнение доказательства Евклида с древнекитайскими или древнеиндийскими. Головоломка "Пифагор".

    реферат, добавлен 07.06.2009

  • Обращение к известным доказательствам Теоремы Карно при решении ряда задач. Обобщение доказательств Теоремы Карно разными способами. Изменение теоремы при замене остроугольного треугольника на тупоугольный. Следствия, вытекающие из Теоремы Карно.

    статья, добавлен 19.01.2021

  • Фундаментальное значение теоремы Пифагора для геометрии. Методы Евклида и Леонардо Давинчи. Алгебраическая формулировка теоремы. Доказывание ее через подобные треугольники, равнодополняемость, методом площадей. Применение в Индии "правила веревки".

    презентация, добавлен 17.11.2015

  • Исследование значения теоремы Пифагора в геометрии. Характеристика классических доказательств теоремы Пифагора, известных из древних трактатов. Определение стороны прямоугольного треугольника по двум другим сторонам. Теорема существования площади фигуры.

    реферат, добавлен 21.01.2015

  • Изучение гладких многообразий. Примеры замкнутых поверхностей. Теорема Эйлера о многогранниках. Определение проективной плоскости по Риману. След движения окружности по плоскости. Алгебраическая топология многообразий. Группы гомотопий и гомологий.

    книга, добавлен 25.11.2013

  • Понятие призмы, ее элементы (основания, боковые грани, высота, диагональ и др.) и виды. Понятие прямой, наклонной и правильной призмы. Свойства многогранника, вычисление площадей полной и боковой поверхностей. Теорема призмы и ее доказательство.

    презентация, добавлен 15.02.2015

  • Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.

    контрольная работа, добавлен 05.05.2013

  • Методы построения сопряженных чисел в различных гиперкомплексных числовых системах. Существенные свойства сопряженных чисел, отличие их свойств от сопряженных в комплексной системе. Правило построения сопряженного числа для систем второго порядка.

    статья, добавлен 29.01.2019

  • Биография французского математика, одного из создателей аналитической геометрии и теории чисел, Пьера Ферма. Математика как увлечение. Две знаменитые теоремы из области теории чисел: малая теорема Ферма и "великая" теорема Ферма, их суть и доказательство.

    доклад, добавлен 07.05.2015

  • Краткая биография и первые научные достижения Франсуа Виета. Определение "формулы Виета" (зависимости между корнями и коэффициентами алгебраического уравнения). Доказательство теоремы и ее опровержение, а также практический пример использования.

    презентация, добавлен 22.02.2014

  • Предположение о простоте решения теоремы Ферма геометрическим способом. Особенности интерпретации известной формулы с точки зрения многомерности пространства. Физическое понимание множества измерений и способы применения их для расчетов в математике.

    доклад, добавлен 23.08.2013

  • Определение секущей равного наклона к двум данным прямым. Доказывание существования секущих равного наклона. Признаки параллельности двух прямых, их свойства. Формулирование одной из теорем планиметрии - теоремы о секущих, ее доказательство и следствие.

    реферат, добавлен 28.03.2014

  • Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.

    лекция, добавлен 29.09.2014

  • Основное утверждение и средства к доказательству первой и второй частей Великой теоремы Ферма, общее замечание к ней. Решение основного утверждения в первой части и гипотетическое доказательство для второй части, полученные элементарным методом.

    статья, добавлен 01.12.2010

  • Свойства простых чисел. Умножение числа на Пифагорову тройку с использованием универсальной формулы. Нахождение свойств бесконечного количества Пифагоровых троек, расположенных на прямой, удовлетворяющих теореме Ферма. Доказательство теоремы Пифагора.

    научная работа, добавлен 22.11.2013

  • Простейшие свойства формаций, их основные обозначения и теоремы. Проекторы конечных групп. Формации Гашюца. Характеристика основных позиций теории формации и приведение конкретных примеров. Строение формаций порожденных группами и сущность корадиалов.

    дипломная работа, добавлен 19.04.2011

  • Теорема Менелая и пропорциональные отрезки в треугольнике. Пересечение медиан, биссектрис, средних перпендикуляров и высот треугольника, их деление в отношениях относительно вершины. Применение указанных теорем к геометрическим задачам на доказательство.

    презентация, добавлен 14.04.2013

  • Доказательство математического выражения, позволяющего находить вероятность появления события при независимых испытаниях. Варианты применения теоремы Бернулли при решении практических задач. Расшифровка модуля вероятности отклонения частоты события.

    краткое изложение, добавлен 12.04.2014

  • Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.

    методичка, добавлен 07.10.2015

  • Построение цепочки силлогизмов для создания доказательства, утверждающего истинность теоремы. Классификация теорем по логической структуре, характеристика необходимых и достаточных условий. Существующие системы аксиом, предъявляемые к ним требования.

    презентация, добавлен 15.02.2012

  • Исследование соотношения концепций понимания и доказательства в математической практике. Эпистемические требования при передоказательстве теоремы. Интерпретация вхождения семантического содержания в синтаксические структуры. Примёмы дедуктивного вывода.

    статья, добавлен 23.09.2020

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.