Господствующие стили математического мышления

Типы математиков: интуитивисты и формалисты. Классификация стилей ученых по линии противопоставления. Стили мышления Д. Гильберта и Э.Я. Брауэра. Проблема непрерывности и полноты, существования математического объекта, природы мышления, единства мира.

Подобные документы

  • Головоломка – непростая задача, при решении которой можно проверить свои мыслительные способности. Математические головоломки и формирование ими логического мышления школьников, развивают круг интересов, не связанных с компьютером. Сборка кубика Рубика.

    практическая работа, добавлен 19.02.2020

  • Развитие у учащихся пространственного мышления как одна из самых важных задач обучения математики. Особенности самостоятельного изготовления учениками наглядных пособий. Примеры использования теории и свойств перпендикулярности прямых и плоскостей.

    статья, добавлен 22.02.2019

  • Классические трудности, возникающие при решении расчетных задач, методология системного анализа их условий. Классификация учебных расчетных задач, способы математического описания заданной ситуации. Ориентировочные основы обобщенного метода решения.

    курсовая работа, добавлен 30.07.2010

  • Роль математики в современной науке. Влияние математики на изменение самого стиля научного мышления, на изменение традиционных способов умозаключений. Аксиоматический метод изложения, принятый в геометрии. Внутреннее логическое единство математики.

    реферат, добавлен 08.11.2012

  • Изучение школьного курса геометрии на примере раздела "Перпендикулярность прямых и плоскостей". Дидактические возможности использования информационных технологий в процессе обучения геометрии в общеобразовательной школе. Проект "Куб принца Руперта".

    статья, добавлен 18.06.2021

  • Характеристика особенностей использования математических задач в процессе обучения для развития наглядно-образного мышления, творческих способностей и исследовательских навыков учащихся. Описание математических задач исследовательского характера.

    статья, добавлен 18.11.2020

  • Модули Капланского-Гильберта над L0. L0-линейные и L0-ограниченные отображения. Спектр L0-линейных и L0-ограниченных операторов. Спектральная теорема для линейных L0-ограниченных самосопряженных операторов в q-конечномерных модулях Капланского-Гильберта.

    диссертация, добавлен 19.06.2015

  • Исследование взаимосвязи между неравномерностью распределения доходов и экономическим ростом. В качестве инструментария используются методы эконометрического и математического моделирования. Информационную базу составляют данные для 127 стран мира.

    статья, добавлен 04.07.2022

  • Формула составных чисел в ряду натуральных чисел. Изучение поведения параметра К. Получение системы арифметических прогрессий. Пример для студенствующих математиков. Рассмотрение подмножества чётных чисел. Некоторые свойства арифметических прогрессий.

    научная работа, добавлен 30.03.2017

  • Участие ученых-математиков в боевых действиях в период Великой Отечественной Войны. Использование математических расчетов для изготовления и эксплуатации военной техники. Статистический контроль в военном производстве. Решение задач военной тематики.

    реферат, добавлен 10.08.2014

  • Изучение специфического мышления математика. Характеристика математики как искусства, сферы творческий деятельности. Анализ практического применения математики. Изучение аргументов Г.Г. Харди в защиту математики как профессиональной деятельности.

    статья, добавлен 31.03.2019

  • Развитие логического мышления на уроках математики. Умение формулировать вопросы и умение соотносить понятия. Прием "тонкие" и "толстые" вопросы. Ознакомление с информацией по теме данного урока. Установление взаимосвязи между теорией и практикой.

    статья, добавлен 04.01.2022

  • Динамика умственного развития школьника в связи с обучением. Педагогический и методический опыт внедрения комбинаторных задач в период обучения. Формирование и развитие математической креативности обучающихся. Решение специальных задач с числами.

    статья, добавлен 27.02.2021

  • Естественный язык как один из начальных этапов объективации результатов мышления, реализованный на слабо формализованном уровне. Шифрование – процесс понижения системности текстовой информации с возможностью его восстановления до исходного состояния.

    статья, добавлен 29.04.2017

  • Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.

    доклад, добавлен 13.03.2022

  • Совершенствование методики изучения уравнений как моделей реальных процессов. Теоретические основы математического моделирования, его виды и классификация. Уравнения как математические модели реальных ситуаций. Анализ учебников алгебры 5-9 классов.

    дипломная работа, добавлен 05.07.2014

  • Понятие задачи-ловушки. Развитие логического мышления при их решении. Допущение обучающимися "смешных" ошибок по невнимательности при решении несложных математических задач. Примеры типичных ошибок. Психологическая инерция как главная причина трудностей.

    статья, добавлен 15.03.2019

  • Векторное уравнение прямой линии и плоскости. Формулы и правила для вычисления частных производных для вектор-функций. Необходимое и достаточное условие непрерывности вектор-функции. Понятие определенного интеграла, параметрические уравнения кривой.

    лекция, добавлен 01.09.2017

  • Закон, по которому группе упорядоченных действительных чисел ставится в соответствие одно число. График функции - поверхность в пространстве. Виды множеств точек. Понятия линии уровня, предела, непрерывности. Частные производные. Уравнение плоскости.

    презентация, добавлен 21.09.2017

  • Системы счисления Вавилонии и Египта. Феноменальное развитие математической науки в Древней Греции. Достижения великих математиков древнего мира. Усовершенствование математики индийцами и арабами, ее упадок в средние века. Современная математика.

    реферат, добавлен 04.09.2011

  • Функция двух переменных – область определения, график. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Частные производные первого порядка. Производная по направлению и градиент. Касательная плоскость и нормаль к поверхности.

    презентация, добавлен 29.10.2017

  • Основные понятия и геометрическая интерпретация дифференциальных уравнений. Использование ОДУ для математического моделирования процессов и явлений в различных областях науки и техники. Особое решение ОДУ первого порядка с разделяющимися переменными.

    контрольная работа, добавлен 20.01.2011

  • Изучение поведения функций и построение их графиков как важный раздел математики. Вклад в развитие графиков функций математиков древнего мира. Основные способы задания функций, методы построениях их графиков. Построение графика обратной функции.

    реферат, добавлен 04.12.2014

  • Использование математического аппарата для описания физических процессов. Геометрическая интерпретация векторов. Правило треугольника и параллелограмма. Свойства скалярного и векторного произведения. Преобразование координат при повороте системы отсчёта.

    учебное пособие, добавлен 19.03.2014

  • Формирование треугольника из трех произвольных отрезков. Расчет вероятности события исходя из оценки количества благоприятных случаев. Вычисление по формулам математического ожидания, дисперсии и среднеквадратического отклонения случайной величины.

    контрольная работа, добавлен 15.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.