Методы решения систем линейных уравнений

Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.

Подобные документы

  • Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.

    методичка, добавлен 27.04.2016

  • Понятие матрицы и ее определителя. Пример квадратной матрицы третьего порядка. Решение системы линейных уравнений при помощи метода Гаусса (представив систему в виде матрицы) и метода Крамера. Влияние выбора метода решения на конечный результат.

    курсовая работа, добавлен 28.06.2012

  • Предложение эффективного численного метода решения линейных краевых задач для обыкновенных дифференциальных уравнений второго порядка. Изложение свойстве составной кинематической кривой. Рассмотрение примеров решения краевых задач линейного уравнения.

    статья, добавлен 27.05.2018

  • Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.

    курс лекций, добавлен 10.09.2016

  • Аналитическая геометрия. Основные положения линейной алгебры. Использование систем линейных уравнений при решении экономических задач. Функции и теоремы математического анализа. Основные методы интегрирования. Дифференциальные и разностные уравнения.

    учебное пособие, добавлен 12.03.2013

  • Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.

    контрольная работа, добавлен 12.12.2012

  • Действия с комплексными числами. Системы линейных уравнений с тремя неизвестными. Решение линейных неравенств, содержащих знак модуля. Показательная функция, ее свойства, график. Показательные уравнения и неравенства. Логарифмическая функция, ее свойства.

    методичка, добавлен 02.04.2015

  • Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.

    презентация, добавлен 26.01.2014

  • Сущность построения математической модели экономического процесса. Геометрическое истолкование дифференциального уравнения. Задача Коши. Общие свойства решений линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами.

    курсовая работа, добавлен 17.01.2011

  • Определение периметра и площади треугольника, длины ребра, объем, уравнения плоскости пирамиды по координатам вершин данных фигур. Приведение уравнения кривой второго порядка к каноническому виду. Решение системы линейных уравнений с тремя неизвестными.

    контрольная работа, добавлен 15.11.2013

  • Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.

    методичка, добавлен 14.12.2010

  • Определение сущности однородного дифференциального уравнения. Характеристика процесса интегрирования однородных линейных дифференциальных уравнений второго порядка в виде обобщенного степенного ряда. Анализ разложения дифференциальных уравнений.

    курсовая работа, добавлен 04.12.2018

  • Системы линейных уравнений и неравенств. Аналитическая геометрия на плоскости. Числовая последовательность и ее предел. Основные теоремы теории вероятностей. Первообразная и неопределенный интеграл. Основы математической статистики. Закон больших чисел.

    методичка, добавлен 23.09.2014

  • Матрицы и действия над ними. Системы линейных алгебраических уравнений и их решение. Компланарные, коллинеарные и ортогональные векторы. Скалярное произведение и его свойства. Уравнение кривых 2-го порядка. Производная функция. Правила дифференцирования.

    курс лекций, добавлен 29.05.2014

  • Уравнение высоты треугольника, тангенс угла между диагоналями параллелограмма. Уравнение плоскости, проходящей через заданную точку параллельно плоскости. Канонические уравнения прямой. Координаты точки пересечения прямой. Геометрическое место точек.

    контрольная работа, добавлен 14.03.2016

  • Доказательство теоремы общей декартовой системы координат при условии не асимптотического направления уравнений. Определение координат для произведения двух линейных множителей. Способы параллельного переноса декартового комплекса второго порядка.

    реферат, добавлен 27.11.2014

  • Описание вида и проведение линейного понижения дифференциального уравнения второго порядка. Построение функции уравнения дифференциала и содержание определителя Вронского. Структура общего решения уравнений второго порядка, доказательство, теорема.

    контрольная работа, добавлен 26.11.2012

  • Скалярное произведение векторов. Смешанное и векторное произведения векторов. Прямая на плоскости. Кривые второго порядка на плоскости. Плоскость и прямая в пространстве. Понятие о поверхностях второго порядка в трехмерном пространстве. Сфера и эллипсоид.

    учебное пособие, добавлен 23.03.2013

  • Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.

    курс лекций, добавлен 22.01.2013

  • Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.

    контрольная работа, добавлен 29.09.2013

  • Элементы теории матриц. Системы линейных уравнений. Элементы векторной алгебры. Прямая на плоскости. Определители третьего порядка. Кривые второго порядка. Плоскость и прямая в пространстве. Поверхности второго порядка. Понятие комплексных чисел.

    лекция, добавлен 23.08.2016

  • Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.

    презентация, добавлен 30.10.2013

  • Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.

    реферат, добавлен 02.04.2022

  • Исследование формы, расположения и свойства линии на плоскости. Геометрический смысл уравнения прямой. Определение угла между двумя прямыми, условия их параллельности или перпендикулярности. Применение линейной зависимости в экономических задачах.

    презентация, добавлен 25.10.2016

  • Определения и пример нахождения собственного значения и собственного вектора матрицы. Системы линейных алгебраических уравнений. Методы Зейделя и Якоби для решения систем линейных алгебраических уравнений. Программа на C++ для решения СЛАУ методом Якоби.

    курсовая работа, добавлен 23.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.