Методы решения систем линейных уравнений

Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.

Подобные документы

  • Понятие целых и дробных уравнений. Определение многочлена стандартного вида. Понятие уравнения с одной переменной. Основные методы решения целых уравнений. Понятие и определение степени уравнения. Определение корня линейного и квадратного уравнения.

    презентация, добавлен 14.01.2015

  • Декартова система координат: порядок и принципы построения, определение координат, графическое решение систем линейных алгебраических уравнений. Реальная многомерная произвольно-угольная система координат. Закономерности решения "полнокровных" систем.

    книга, добавлен 01.08.2013

  • Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.

    реферат, добавлен 06.03.2023

  • Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.

    курс лекций, добавлен 19.09.2015

  • Характеристика особенностей линий второго порядка - плоских линий прямоугольных координат, точки которых удовлетворяют алгебраическое уравнение второй степени. Изучение формул преобразования координат при параллельном переносе и повороте на угол.

    презентация, добавлен 17.11.2015

  • Алгебра матриц, линейные и матричные уравнения. Матрицы в экономических приложениях. Свободные векторы, система координат. Линейные операторы, квадратичные формы и классификация кривых второго порядка. Расположение прямых на плоскости и в пространстве.

    учебное пособие, добавлен 06.02.2011

  • Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.

    контрольная работа, добавлен 11.12.2012

  • Построение общего решения характеристического однородного уравнения. Запись неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами и специальной правой частью. Применение метода Лагранжа вариации произвольных постоянных.

    методичка, добавлен 17.05.2023

  • Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.

    курсовая работа, добавлен 26.11.2014

  • Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.

    контрольная работа, добавлен 06.08.2013

  • Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.

    реферат, добавлен 16.03.2012

  • Теоретические аспекты понятия матрицы, правила основных операций над н6ими (сложения, умножения, умножения на число). Определитель в теории систем линейных уравнений, его вычисление и основные свойства. Решение систем линейных уравнений методом Крамера.

    реферат, добавлен 30.10.2010

  • Методы решения линейных систем уравнений. Приведение системы к треугольному виду последовательным обнулением поддиагональных элементов первого и второго столбца как цель прямого хода преобразований в методе вращений. Особенности хода преобразований.

    контрольная работа, добавлен 18.11.2013

  • Особенность канонических уравнений линий второго порядка. Характеристика эллипса, параболы и гиперболы. Суть отношений расстояний от любой точки до фокуса. Рассмотрение полюса полярной системы координат. Анализ способа использования энергии Солнца.

    презентация, добавлен 01.03.2015

  • Невырожденные матрицы второго порядка. Теорема о разложении матрицы в линейную комбинацию ее сопряжённых корней. Условие идемпотентности квадратных матриц второго порядка. Нелинейные системы уравнений второго порядка, задаваемые матричными уравнениями.

    научная работа, добавлен 04.05.2012

  • Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.

    учебное пособие, добавлен 24.10.2012

  • Понятие и сущность кривой второго порядка, определение координат центра и радиуса окружности. Специфика и описание эллипса, построение декартовой системы координат. Характеристика канонического уравнения гиперболы и параболы, их отличительные черты.

    лекция, добавлен 09.07.2015

  • Ознакомление с действиями над матрицами. Рассмотрение и характеристика свойств определителей (детерминант). Изучение сущности алгебраического дополнения минора матрицы. Анализ условий применения матричного метода решения систем линейных уравнений.

    контрольная работа, добавлен 12.10.2016

  • Основы линейной и векторной алгебры. Пределы и непрерывность. Дифференциальное исчисление функций с одной и несколькими переменными. Зависимость производной от направления. Аналитическая геометрия и комплексные числа. Тригонометрическая форма записи.

    курс лекций, добавлен 09.10.2013

  • Изучение постоянных действительных чисел. Общее уравнение кривой второго порядка. Выделения полного квадрата прямых линий. Гипербола и парабола как геометрические места точек плоскости. Оценка размещения декартовых координат в алгебраическом уравнении.

    лекция, добавлен 14.03.2014

  • Рассматривается задача решения разреженных положительно определенных систем линейных алгебраических уравнений с медленно меняющимися коэффициентами. Приведены условия локальной и глобальной сходимости алгоритма. Обсуждаются его основные свойства.

    статья, добавлен 26.04.2019

  • Аналитическая геометрия как раздел математики, в котором изучают свойства геометрических объектов средствами алгебры и математического анализа при помощи метода координат. Основные понятия, принципы данного метода, условия его эффективного использования.

    реферат, добавлен 16.03.2016

  • Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.

    учебное пособие, добавлен 15.04.2014

  • Выполнение геометрических построений на плоскости и в пространстве, сопутствующих расчетов при помощи компьютерной программы geogebra. Примеры приведения к каноническому виду алгебраических уравнений второго порядка, определяющих линию или поверхность.

    статья, добавлен 20.04.2018

  • Три вида уравнений второго порядка, допускающих понижение степени. Порядок введения новой функции. Условие преобразования исходного уравнения в неполное уравнение первого порядка. Пример решения дифференциального уравнения заданного вида, расчет функции.

    презентация, добавлен 17.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.