Нейросетевое моделирование: принципы, алгоритмы, приложения

Структурные алгоритмы построения статических и динамических нейронных сетей. Многослойный персептрон с временными задержками и связанные с ним нейросетевые архитектуры. Динамическая кластеризация и сети Кохонена. Обзор итерационных методов обучения сетей.

Подобные документы

  • Принципы построения локальных сетей. Одноранговые сети с разделением ресурсов и сети типа клиент-сервер. Требуемая пропускная способность, скорость передачи в сети. Обследование методов интеграции сетей. История модемов с неэкранированной витой парой.

    реферат, добавлен 27.12.2012

  • Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.

    курсовая работа, добавлен 22.05.2018

  • Исследование выделения объектов интереса на изображении на основе сверточных нейронных сетей. Анализ возможностей их применения для поиска объекта на изображении. Алгоритм обучения нейронной сети. Возможность обучения за счет "предсказания" границ.

    статья, добавлен 16.02.2025

  • История возникновения, виды, свойства и обучение искусственных нейронных сетей. Технология самообучения и задачи, решаемые при помощи нейронной сети Кохонена. Ограничения, накладываемые на компьютерную имитационную модель, ее схемы в среде MatLab.

    дипломная работа, добавлен 12.01.2012

  • Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.

    статья, добавлен 26.04.2019

  • Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.

    дипломная работа, добавлен 28.10.2019

  • Общее описание нейронных сетей, их виды: однослойные и многослойные сети, персептрон, сети Хопфилда. Описание программных моделей и алгоритмов их обучения. Релаксация стимула, возникновение ложного образа и выработка прототипа, бистабильность восприятия.

    контрольная работа, добавлен 12.05.2015

  • Маршрутизация как процедура определения пути следования пакета из одной сети в другую. Объединение сетей и обслуживание альтернативных путей. Связь разных типов сетей и доступ к глобальной сети, управление трафиком на основе протокола сетевого уровня.

    реферат, добавлен 14.12.2013

  • Сущность и эволюция компьютерных сетей, принципы и этапы их построения. Платы сетевого адаптера. Параметры конфигурации и факторы, влияющие на них. Типы и топологии сетей, их отличительные свойства и особенности. Специфика построения беспроводных сетей.

    презентация, добавлен 03.06.2012

  • Разработка программного модуля диагностики поведения роторной системы на основе нелинейных авторегрессионных моделей нейронных сетей и алгоритма обучения Левенберга-Марквардта. Применение искусственной нейронной сети в анализе динамических процессов.

    статья, добавлен 01.02.2019

  • Повышение эффективности работы российских медицинских учреждений. Создание автоматизированных систем распознавания объектов, свёрточных нейронных сетей. Преимущества глубокого обучения и искусственного интеллекта в решении задач компьютерного зрения.

    статья, добавлен 29.12.2024

  • Принципы построения вычислительных сетей. Эталонная модель взаимодействия открытых систем. Основы передачи дискретных данных. Построение локальных сетей по стандартам физического и канального уровня. Сетевой уровень как средство построения больших сетей.

    курс лекций, добавлен 11.09.2013

  • Сущность и принципы построения компьютерных сетей, их классификация и разновидности. Закономерности разработки вычислительных сетей, их иерархия, архитектура. Эталонная модель взаимодействия OSI. Характерные особенности топологии и технических средств.

    реферат, добавлен 29.05.2014

  • Рассмотрение вопросов, связанных с решением задачи построения и обработки когнитивных структур на основе использования нейронных сетей. Организация специализированной модели, настроенной на решения поставленной задачи "Нейросетевая когнитивная модель".

    статья, добавлен 23.08.2020

  • Искусственный интеллект как научное направление, связанное с попытками формализовать мышление человека. Структура мозга и моделирование функций нервной системы. Применение нейронных сетей для решения прикладных задач и основные алгоритмы обучения.

    учебное пособие, добавлен 24.04.2014

  • Искусственный интеллект и нейронные сети. Особенности использования искусственных нейронных сетей в системах управления. Системы адаптивного управления, использующие эталонную модель Ляпунова. Архитектура построения нейросетевых систем управления.

    отчет по практике, добавлен 09.02.2019

  • Понятие и принцип работы нейронных сетей. Типы нейронов и их функциональные особенности: биологические и искусственные. Базовые архитектуры нейронных сетей, их структура и элементы. Этапы программирования средств аппаратной поддержки нейровычислений.

    контрольная работа, добавлен 14.10.2013

  • Описание разработанной методики синтеза импульсных рекуррентных нейронных сетей в составе машины неустойчивых состояний для решения задачи распознавания динамических образов в рамках парадигмы резервуарных вычислений. Входные данные и их предобработка.

    статья, добавлен 15.01.2019

  • Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.

    контрольная работа, добавлен 06.12.2015

  • Нейронные сети: особенности, варианты использования и преимущества. Диагностика и прогнозирование экономических объектов. Применение нейронных сетей в рыночной экономике. Варианты применения искусственных нейронных сетей в задачах бизнес-прогнозирования.

    реферат, добавлен 15.03.2009

  • Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.

    дипломная работа, добавлен 30.07.2016

  • Изучение биологических аналогов изучаемых нейронных сетей. Разбор задачи воссоздания перцептрона. Принципы обучения нейронной сети. Моделирование программ, показывающих работу перцептрона. Синапс и алгоритм передачи информационного сигнала в сети.

    реферат, добавлен 22.03.2019

  • Этапы становления и развития нейронных сетей. Головной мозг, нейронные сети и компьютеры. Программные и аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей. Способы распознавания образов предметов.

    реферат, добавлен 17.05.2013

  • Ключевые принципы построения компьютерных сетей как совокупности узлов (компьютеров, терминалов, периферийных устройств). Основные типы сетей. Технологии локальных сетей, их соединение. Протоколы, адресация в сетях. Особенности глобальной сети Интернет.

    презентация, добавлен 10.11.2013

  • Принцип построения компьютерных сетей. Локальные компьютерные сети, их классификация, структура. Особенности физической среды передачи в локальных сетях. Характеристика глобальных и компьютерных сетей. Сеть Internet. Обзор российских сетей протокола Х.25.

    курсовая работа, добавлен 20.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.