Вейвлет-преобразование и анализ временных рядов

Вейвлет-анализ как альтернатива преобразованию Фурье для исследования временных (пространственных) рядов с выраженной неоднородностью. Применение семейства анализирующих функций, называемых вейвлетами, для изучения и анализа изображений различной природы.

Подобные документы

  • Общность обработки временного ряда методами линейной фильтрации, спектрального анализа и главных компонент. Использование метода главных компонент для исследования и прогнозирования динамики заготовок шкурок водяной полевки и урожайности зерновых культур.

    книга, добавлен 08.02.2013

  • Тригонометрическая система функций. Формулы интеграла Фурье для различных функций. Применение преобразования Фурье к задачам математической физики, электротехники. Решение уравнения Бесселя, возникающего при разделении переменных. Гармонический анализ.

    курс лекций, добавлен 29.09.2014

  • Определение основных понятий рядов в высшей математике, их классификация и характеристики: положительные, знакочередующиеся, функциональные, степенные ряды и ряды Фурье (в том числе четных, нечетных и непериодических функций). Абсолютная сходимость.

    реферат, добавлен 17.01.2011

  • Характерные особенности динамических рядов - дискретных и непрерывных. Визуальный анализ графиков динамических рядов. Направленность (тренд). Колебательная компонента. Случайная компонента. Обнаружение и выделение тренда. Порядок построения коррелограммы.

    реферат, добавлен 22.08.2015

  • Понятия и свойства функции. Исследование функции на четность и нечетность. Теория степенных рядов и рядов Фурье. Практический смысл утверждений о связи возрастания и убывания со знаком производной. Симметричность функций относительно осей координат.

    контрольная работа, добавлен 12.03.2013

  • Фрактал - геометрическая форма, разделенная на части, каждая из которых - уменьшенная версия целого. Способы его построения. Методы определения фрактальной размерности для временного ряда. Примеры диагностики нестабильных состояний финансовой системы.

    доклад, добавлен 22.02.2013

  • Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.

    курсовая работа, добавлен 09.07.2015

  • Применение для диагностики процессов, интерпретированных временными рядами, методов, которые основаны на поиске аномалий. Алгоритм поиска и нахождения аномалий, происходящих в условиях неопределенности, на основе анализа нечетких локальных тенденций.

    статья, добавлен 29.03.2019

  • Теории неопределенных интегралов, интегралов Римана для функций одного переменного и теории числовых рядов. Суммы Дарбу, их свойства. Площадь криволинейной трапеции, объем тела вращения. Определение числовых рядов, их сходимость и преобразование.

    методичка, добавлен 06.08.2015

  • Модуль комплексной амплитуды как линейчатый спектр периодической функции. Связь между спектрами дискретизированного и непрерывного сигналов. Быстрое преобразование Фурье с прореживанием по времени. Определение числа итераций алгоритма, расчет множителя.

    курсовая работа, добавлен 21.06.2019

  • Группировка статистических данных. Анализ их совокупностей: построение рядов распределения, их графическое представление, определение показателей вариации. Статистические методы анализа взаимосвязи. Понятие и структура индекса и динамических рядов.

    методичка, добавлен 06.11.2017

  • Применение различных вариационных рядов к выборкам сгруппированных и несгрупированных данных, для каждой из которых проводится свой анализ. Графическое отображение вариационных рядов. Коррелиционно-регрессивный анализ для выборки несгруппированных данных.

    контрольная работа, добавлен 10.05.2019

  • Решение дифференциальных уравнений и линейных Бернулли. Исследование на сходимость знакоположительных рядов и рядов с положительными членами при помощи интегрального признака Коши. Вычисление признака Даламбера. Сравнение эталонных гармонических рядов.

    контрольная работа, добавлен 29.03.2018

  • Временной ряд и его основные элементы, закономерности автокорреляция уровней и выявление структуры. Моделирование тенденции и метод наименьших квадратов. Приведение уравнения тренда к линейному виду. Аддитивная и мультипликативная модели временного ряда.

    реферат, добавлен 07.09.2015

  • Предложение модели различной сложности для прогнозирования нестационарных ВР с учётом экзогенных факторов. Обзор методов идентификации этих моделей на основе совместного использования многомерного варианта метода "Гусеница"-SSA и моделей SARIMAX.

    статья, добавлен 30.10.2016

  • Возникновение и сущность математического метода Фурье. Характеристика разновидностей преобразования Фурье: непрерывного и дискретного, прямого и обратного, быстрого и оконного. Анализ свойств преобразования Фурье, сфер его применения и значения.

    курсовая работа, добавлен 18.01.2016

  • Алгоритмы цифровой обработки сигналов. Эквивалентная запись, базисные синусоиды. Комплексное, двумерное дискретное преобразование Фурье, тождества Эйлера. Сигнал и его спектр. Ортогональность функций. Реконструкция сигнала по ограниченному ряду.

    реферат, добавлен 18.03.2015

  • Определение понятия прогнозирования. Характеристика видов и методов прогнозирования. Анализ основных элементов временных рядов. Моделирование тенденции временного ряда путем построения аналитической функции. Пример решения задачи трендовым методом.

    курсовая работа, добавлен 11.04.2017

  • Основные понятия интегральных уравнений. Понятие интегральных преобразований и их таблица, преобразование Фурье, Лапласа и Меллина и их применение к решению интегральных уравнений. Преобразование Фурье и её применение к решению некоторых интегральных урав

    дипломная работа, добавлен 29.04.2024

  • Сущность задачи о случайных блужданиях. Статистические свойства временных рядов, представляющих собой фиксации логарифмических приращений цен акций и фондовых индексов. Применение моделей негауссовых случайных блужданий для описания реальной системы.

    автореферат, добавлен 28.10.2018

  • Решение граничных задач. Определение числового ряда. Основные свойства числовых рядов. Признаки сходимости Лейбница. Ряды с положительными членами. Знакочередующиеся и знакопеременные ряды. Числовые и функциональные ряды. Ряды и интеграл Фурье.

    курсовая работа, добавлен 03.07.2014

  • Решение задач прогнозирования потребления разнотипных энергоресурсов и холодной воды методом анализа временных рядов, а также прогнозирования уровней сложного временного ряда (окна данных), имеющего тренд-циклическую компоненту и случайную составляющую.

    статья, добавлен 24.03.2018

  • Свойства, методы моделирования и оценка параметров устойчивых распределений. Анализ моделей GARCH, GARCH с устойчивыми остатками и SGARCH для финансовых временных рядов. Построение разных типов вероятностных моделей с помощью средств пакета Mathematica.

    курсовая работа, добавлен 25.10.2012

  • Оцінка розподілу супремуму дробових процесів на скінченному відрізку та при прямуванні аргументу до нескінченності. Дослідження збіжності вейвлет розкладів. Властивості випадкових процесів дробового ефекту, особливості їх математичного моделювання.

    автореферат, добавлен 12.07.2015

  • Изучение биографии знаменитого французского математика и физика - Ж.Б. Фурье. Теорема о числе действительных корней алгебраического уравнения. Теория распространения тепла в твердом теле. Анализ интеграла, коэффициентов, преобразования и метода Фурье.

    реферат, добавлен 22.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.