Вейвлет-преобразование и анализ временных рядов
Вейвлет-анализ как альтернатива преобразованию Фурье для исследования временных (пространственных) рядов с выраженной неоднородностью. Применение семейства анализирующих функций, называемых вейвлетами, для изучения и анализа изображений различной природы.
Подобные документы
Задача нахождения точных констант методами суммирования рядов Фурье, ее анализ для совокупности аппроксимирующих последовательностей, которые называют тригонометрическими операторами Баскакова. Рассмотрение некоторых частных случаев данной задачи.
статья, добавлен 31.05.2013- 77. Теория множеств
Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.
контрольная работа, добавлен 17.06.2014 Знакомство с системами, выполняющими преобразование аналогового видеосигнала в цифровую форму. Этапы разработки математической модели видеопоследовательностей, на базе матричного описания пространственно-временных структур автокорреляционных функций.
контрольная работа, добавлен 31.07.2013Проблема прогнозирования многомерного временного ряда. Разработка метода сингулярного разложения траекторной матрицы, столбцами которой являются векторы вложения – отрезки ряда, равные длине окна. Построение рекуррентного прогноза многомерного ряда.
статья, добавлен 27.02.2019Полные и неполные матричные пространства. Сжимающие отражения и неподвижные точки. Основные операторы в функциональных пространствах. Общий вид линейного функционала. Умножение и дифференцирование обобщенных функций. Преобразование Фурье в пространстве.
учебное пособие, добавлен 18.06.2015Анализ рядов, составленных по ежедневным замерам уровня воды в горной реке Мзымта. Построение моделей, адекватно описывающих динамику рядов. Расчет точечных и интервальных прогнозов на семь дней. Оценка точности построенных моделей, сравнение значений.
статья, добавлен 22.05.2017Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014Краткое описание антагонистической игры. Теория и методы принятия решений. Концепция расчета по методу анализа иерархий. Особенность обработки матриц парных сравнений. Решение задачи линейного программирования. Учение сложности и преобразование Фурье.
методичка, добавлен 21.04.2016Методика оценки шумовой компоненты во временных рядах с переменным шагом, ее обоснование и разработка алгоритма удаления шума. Выполнение требований гладкости функции, представляющей исходные данные и имеющей непрерывные производные до третьего порядка.
статья, добавлен 08.03.2019Определение понятий производной и интеграла. Виды множеств для вещественных чисел. Геометрический и физический смысл дифференциала. Интегрирование рациональных, тригонометрических и иррациональных функций. Свойства числовых и функциональных рядов.
курс лекций, добавлен 10.06.2015Группировка и ее виды. Графическое построение рядов распределений. Понятие вариации и обобщающих статистических показателей. Сущность корреляционно-регрессионного анализа. Ряды динамики и их статистический анализ. Определение экономических индексов.
контрольная работа, добавлен 11.12.2012- 87. Степенные ряды
Способ определения радиуса сходимости степенного ряда. Остаточный член формулы Тейлора, записанный в форме Лагранжа. Простое достаточное условие разложимости функции в ряд Тейлора. Дифференцирование степенных рядов для нахождения сумм некоторых рядов.
курсовая работа, добавлен 23.04.2011 - 88. Числовые ряды
Определения, понятия и элементарные свойства сходящихся числовых рядов. Необходимое условие и достаточные признаки сходимости знакоположительного ряда. Признаки сравнения; признаки Даламбера, Коши. Исследование знакопеременных рядов; теорема Лейбница.
курс лекций, добавлен 30.07.2017 Определение интервальных статистических рядов распределения частот, составление эмпирических функций распределения, анализ числовых характеристик выборки. Изучение методики проверки статистических гипотез. Анализ метода наименьших квадратов в статистике.
методичка, добавлен 06.05.2015Проведение исследования основных нелокальных краевых задач для дифференциальных и псевдодифференциальных уравнений. Характеристика важнейших преобразований Фурье по пространственным переменным. Существенная особенность изучения параболических заданий.
статья, добавлен 30.10.2016- 91. Сходимость рядов
Исследование сходимости рядов по признаку сходимости Даламбера. Определение интеграла с точностью до 0,001 путем предварительного разложения подинтегральной функции в ряд и почленного интегрирования этого ряда. Определение функции Лапласа.
контрольная работа, добавлен 18.03.2014 Систематическое изучение семейств линейных полиномиальных операторов в шкале пространств. Использование методов теории функций одной и многих действительных переменных, теории вероятности, функционального анализа в банаховых пространствах, анализа Фурье.
автореферат, добавлен 12.05.2014Теоретические вопросы построения рядов распределения. Определение среднего значения признака и дисперсии по статистическому ряду распределения. Статистический ряд распределения групп семей по размерам площади на одного члена семьи с закрытыми интервалами.
лабораторная работа, добавлен 01.08.2017Способы построения вариационных рядов в статистическом анализе. Интервальный и дискретный вариационные ряды. Эмпирическая функция распределения. Доверительные интервалы для истинного значения измеряемой величины и среднего квадратического отклонения.
лабораторная работа, добавлен 30.03.2018Понятие статистических рядов распределения, их виды, расчет средних величин, моды и медианы. Графическое представление рядов, назначение структурных диаграмм. Расчет обобщающих показателей ряда распределения. Построение вариационного интервального ряда.
курсовая работа, добавлен 12.02.2011Смысл введения интегральных преобразований. Свойства линейности изображения. Теорема о интегрировании оригинала и изображений. Операционное исчисление и некоторые его приложения. Понятие о свертке функций. Теорема о умножении изображений. Теорема Эфроса.
реферат, добавлен 18.05.2010- 97. Числовые ряды
Понятие сходимости числового ряда. Сходимость положительных рядов. Признак Даламбера с использованием нижнего и верхнего предела. Объединённый признак Даламбера, радикальный признак Коши. Перестановки числовых рядов. Теорема об универсальных рядах.
контрольная работа, добавлен 26.12.2011 Получение двусторонних поточечных оценок функции Лебега сумм Фурье по рассматриваемой системе. Доказательство точности данного неравенства в случае приближения функций. Построение примера функции заданного класса в случае обобщенного веса Якоби.
автореферат, добавлен 10.12.2013Объяснение работы быстрого преобразования Фурье и исследование специфики реализации на программируемых логических интегральных схемах. Особенности и принципы его реализации реализуется в основном с помощью цифровой программной обработки сигналов.
статья, добавлен 10.08.2018Доказательство алгебраичности значений радиальных производных для одного класса степенных рядов, являющихся результатом их произведения по Дирихле. Ряды Дирихле с периодическими алгебраическими коэффициентами, имеющими ограниченную сумматорную функцию.
статья, добавлен 31.05.2013