Корреляционно-регрессионный анализ
История развития и современное понимание статистики. Характеристика видов причинно-следственных связей. Статистическое моделирование связи методом корреляционного и регрессионного анализа на примере взаимосвязи капитала и работающих активов 32 банков.
Подобные документы
Понятие регрессионного анализа и его цели. Использование линейных и нелинейных функций при построении регрессионных моделей. Проверка на значимость коэффициентов регрессии по статистическому критерию Стьюдента и ее уравнения с помощью F-критерия Фишера.
контрольная работа, добавлен 19.11.2013Процедура выбора наилучшего регрессионного уравнения, краткий анализ. Метод выбора "наилучшего подмножества" предикторов. Регрессия на главных компонентах, на собственных значениях. Расчет коэффициента детерминации. Средняя ошибка аппроксимации.
статья, добавлен 02.02.2019Статистическое описание и выборочные характеристики двумерного случайного вектора. Линейная регрессия, задачи линейного регрессионного анализа. Однофакторный дисперсионный анализ. Границы доверительных интервалов для параметров линейной регрессии.
курсовая работа, добавлен 28.10.2017Изучение межпредметных связей математики с инженерными дисциплинами. Рассмотрение применения математического моделирования для анализа производственных процессов и их прогнозирования. Формирование знаний основных сведений математической статистики.
учебное пособие, добавлен 06.04.2014Построение статистического ряда распределения организаций по объему работающих активов. Определение характера связи между признаками Работающие активы и Прибыль методами аналитической группировки и корреляционных таблиц. Определение ошибки выборки.
контрольная работа, добавлен 01.03.2017Статистическое моделирование как научное направление, области его применения. Методы Монте-Карло: анализ общей схемы, достоинства, недостатки и примеры применения. Случайные числа, генераторы случайных и псевдослучайных чисел. Метод Hit-Or-Miss.
лекция, добавлен 18.07.2013Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.
курс лекций, добавлен 02.02.2012Основные понятия, теоремы и методы теории вероятностей и математической статистики. Общее описание случайных процессов. Исследование типовых примеров и упражнений. Сущность и элементы корреляционного анализа. Этапы проверки статистических гипотез.
учебное пособие, добавлен 22.06.2014Сущность метода неоконченных предложений, этапы анализа полученных данных. Разработка метода парных сравнений и сферы его использования. Дихотомические пары понятий, которые важны для изучения связи. Анализ взаимосвязи признаков и коэффициентов связи.
курсовая работа, добавлен 22.01.2013Результат множественной регрессионного анализа тарифов на размещение рекламы в журналах. Коэффициенты регрессии и уравнение. Прогнозируемые значения функций и переменных. Данные в уравнение прогнозирования исходной совокупности данных в множествах.
реферат, добавлен 29.09.20133адача определения закона распределения случайной величины или системы случайных величин по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Применение однофакторного дисперсионного анализа.
курсовая работа, добавлен 21.10.2017Значение математики в биологии. Математические методы и статистическая совокупность. Дискретная случайная величина и законы ее распределения. Статистическое оценивание и проверка статистических гипотез. Специфика регрессионного и кластерного анализа.
реферат, добавлен 29.12.2014Байесовы сети (БС) как средство формализованного представления причинно-следственных зависимостей. Описание аппарата и задач, решаемых с помощью БС. Разработка вероятностной модели для анализа причин дефектов электрических соединителей на основе БС.
статья, добавлен 27.05.2018Метод наименьших квадратов - один из основных способов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Методика определения частных коэффициентов эластичности на основе уравнений регрессии.
контрольная работа, добавлен 11.04.2015- 40. Возможности использования доверительного интервала при принятии параметров нормализованной модели
Получение математической модели при её адекватности экспериментальной информации как одна из наиболее важных целей регрессионного анализа. Методика определения среднего значения серии опытов в центре плана и дисперсии воспроизводимости эксперимента.
статья, добавлен 26.08.2021 Специфические особенности определения скорости сходимости методом статистических испытаний. Характеристика многомерной центральной предельной теоремы. Методика описания помех, которые создаются электровозом, при помощи двумерного случайного вектора.
статья, добавлен 20.05.2017Функциональная и статистическая зависимости. Положения корреляционного анализа, двумерная модель. Проверка значимости и интервальная оценка параметров связи. Понятие о многомерном корреляционном анализе, множественный и частный коэффициенты корреляции.
курсовая работа, добавлен 19.01.2016Метод наименьших квадратов как один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Определение эффективности использования процедур Кохрейна-Оркатта, Хилдрета-Лу и Дарбина.
статья, добавлен 02.02.2019Формальные определения корневой, прямой и непрямой причин посредством математического аппарата причинных байесовых сетей (БС). Этапы задачи обучения БС на основе статистических данных. Разработка алгоритма структурного обучения причинной байесовой сети.
статья, добавлен 27.05.2018Основные понятия математической статистики. Оценка параметров, проверка гипотез и основы регрессионного анализа. Точечное и интегральное оценивание и их эффективность. Критерии согласия и линейная регрессия. Метод наименьших квадратов. Теорема Пирсона.
курс лекций, добавлен 03.07.2013Регрессионный анализ - определение аналитического выражения связи, в котором изменение одной величины обусловлено влиянием одной или несколько независимых величин. Методы выбора математической модели в парной регрессии. Определение остатка для наблюдения.
реферат, добавлен 11.12.2017Основные понятия и определения планирования и организации эксперимента. Метод наименьших квадратов и факторный эксперимент. Дисперсионный анализ и построение теоретической функции методом квадратов. Регрессионная зависимость эксперимента, её анализ.
курсовая работа, добавлен 27.09.2011Основы моделирования, классификации моделей. Анализ результатов натурных и вычислительных экспериментов. Классические и поисковые методы генерации и использования псевдослучайных чисел. Имитационное и статистическое моделирование, метод Монте-Карло.
дипломная работа, добавлен 13.10.2015Знакомство с принципами и критериями выбора регрессионной модели. Рассмотрение видов закономерностей в лесоводстве и лесной таксации. Особенности математической формы эмпирических моделей связи. Анализ линейных и нелинейных регрессионных уравнений.
автореферат, добавлен 29.03.2018Группировка статистических данных. Анализ их совокупностей: построение рядов распределения, их графическое представление, определение показателей вариации. Статистические методы анализа взаимосвязи. Понятие и структура индекса и динамических рядов.
методичка, добавлен 06.11.2017