Дискретная математика

Изучение математических моделей объектов, процессов и зависимостей, решаемых дискретной математикой. Анализ элементов теории множеств. Понятие и применение математической логики. Определение алгебраических операций. Теория графического представления.

Подобные документы

  • Создание таблицы значений функции алгебры логики, способы нахождения всех существенных переменных. Построение полинома Жегалкина функции. Определение совершенной дизъюнктивной нормальной формы. Особенности создания связного ориентированного графа.

    контрольная работа, добавлен 27.08.2013

  • Алгебра как часть вычислительного анализа и теории функций. Теория конечных групп подстановок. Представители Русской алгебраической школы. Научные исследований по математике Отто Шмидта, гипотеза о происхождении Земли. Труды по теории множеств Новикова.

    реферат, добавлен 14.11.2014

  • Изучение исторических аспектов взаимосвязи медицины и математики. Рассмотрение математических методов и моделей, применяемых в медицине. Основные требования к процессу моделирования. Анализ модели на основе накопленных данных об изучаемом объекте.

    реферат, добавлен 28.01.2017

  • Моделирование физических объектов, дискретная модель которых описывается системой линейных алгебраических уравнений (СЛАУ). Методика проверки на корректность СЛАУ, составленной методом узловых потенциалов, имеющей невырожденную и симметричную матрицу.

    статья, добавлен 25.12.2016

  • Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.

    лабораторная работа, добавлен 28.05.2015

  • Определение взаимодействия законов логики и правил алгебры. Основные понятия и термины двух наук – логики и алгебры. Примеры логических и алгебраических выражений. Математический анализ и математическая логика выдающегося ученого Огастесе де Моргана.

    реферат, добавлен 23.12.2017

  • Теория вероятностей как один из разделов математики. Типы события и действия над ними. Случайное событие, его виды. Применение операций сложения и умножения при определении вероятностей. Наглядная геометрическая интерпретация этих понятий, дерево исходов.

    реферат, добавлен 10.11.2014

  • Понятие, элементы и виды множества. Круги Эйлера. Разбиение на части. Декартово произведение множеств. Число элементов в объединении и разности конечных множеств. Способы решения текстовой задачи. Аксиоматическое построение системы натуральных чисел.

    курс лекций, добавлен 26.11.2016

  • Статистическое определение вероятности случайного события и меры статистической закономерности появления события. Применение графической диаграммы Эйлера из теории множеств. Определение свойства относительной частоты и пространства элементарных событий.

    лекция, добавлен 26.09.2017

  • Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.

    статья, добавлен 26.04.2019

  • Операторы преобразования переменных. Классы моделей объекта, систем управления. Способы построения математических моделей. Особенности структурных моделей систем управления. Примеры математических моделей в проектировании объектов горной электромеханики.

    реферат, добавлен 21.02.2015

  • Сущность программы логицизма - определение основных, исходных понятий чистой математики в терминах логики, а её фундаментальные законы доказать как теоремы логики. Перевод на язык логики основных понятий арифметики. Первый известный логицист Г. Фреге.

    статья, добавлен 02.10.2018

  • Понятие и предназначение функции алгебры логики, характеристика табличного, графического, координатного, числового и аналитического способа её задания. Специфика составления карты Карно с помощью функции алгебры логики, таблица истинности переменных.

    реферат, добавлен 15.11.2017

  • Возникновение логики. Элементы математической логики. Операции над логическими функциями. Булевы функции. Преобразование выражений булевых функций. Нахождение исходного выражения по его значениям. Применение в вычислительной технике и информатике.

    реферат, добавлен 14.07.2008

  • Определение отсутствия в теории множеств с самопринадлежностью парадокса Мириманова, парадокса Кантора, парадокса Бурали–Форти. Обоснование утверждения о том, что объединение порядковых чисел является порядковым числом - основы парадокса Бурали–Форти.

    статья, добавлен 26.04.2019

  • Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.

    методичка, добавлен 24.09.2019

  • Теория игр как раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта, ее основные понятия и утверждения. Методы решения игры: Брауна-Робинсона, монотонный итеративный алгоритм.

    контрольная работа, добавлен 10.05.2017

  • Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.

    реферат, добавлен 19.01.2012

  • Этапы разработки математической модели электромеханической системы. Определение допущений и начальных условий, определяемых физическим смыслом задачи. Методы решения математических уравнений, описывающих процессы. Интерпретация результатов моделирования.

    презентация, добавлен 20.04.2017

  • Сущность и содержание идеи создания математической теории конфликта – теории игр, основные этапы ее формирования и современное состояние. Понятие и базовые признаки игры. Интерпретация данной теории отечественными и зарубежными учеными, разница подходов.

    реферат, добавлен 27.02.2011

  • Теория игр - раздел математики, изучающий конфликтные ситуации на основе их математических моделей. Оптимальная стратегия для каждого игрока. Признаки классификации игры. Решение матричных игр в чистых и смешанных стратегиях. Основная теорема теории игр.

    контрольная работа, добавлен 24.10.2014

  • Проведение исследования бинарной и унарной алгебраических операций на множестве. Особенность формализации нечеткой информации для построения математических моделей. Характеристика аксиом меры нечеткости. Основные виды метрик функциональных пространств.

    лабораторная работа, добавлен 06.10.2017

  • Рассмотрение основных понятий теории множеств. Сущность элементарных тождеств, их функции и признаки. Главные свойства операций над отношениями: эквивалентности, толерантности, частичности порядка. Характеристика теории графов: эйлеровы, гамильтоновы.

    учебное пособие, добавлен 28.12.2013

  • Аксиомы теории Цернело-Френкеля по устранению. Аксиома выбора как один из важнейших теоретико-множественных принципов, альтернативные формулировки аксиомы и её применение. Принцип вполне упорядочивания и лемма Цорна для частично упорядоченных множеств.

    реферат, добавлен 11.10.2014

  • Фундаментальные концепции математики. Анализ элементарных функций и их классификация. Описание их свойств и характерные особенности графического представления. Практическое применение элементарных функций в различных сферах и примеры их использования.

    реферат, добавлен 11.12.2023

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.