Исторический обзор аксиоматического построения проективной геометрии
Особенности построения проективной плоскости на базе трехмерного векторного пространства, аналитически и аксиоматически. Характеристика проективной плоскости, ее основные свойства. Анализ теорем Дезарга, Паппа, их применение на евклидовой плоскости.
Подобные документы
Топологические и геометрические свойства графов. Теорема Штейница. Хроматический многочлен. Топология подмножеств евклидова пространства. Расстояние от точки до множества. Теоремы Лебега о покрытиях. Кривые на плоскости. Паракомпактные пространства.
книга, добавлен 28.12.2013- 102. Основы геометрии
Определение терминов "движение плоскости" и "наложение". Особенности и свойства осевой симметрии. Центральная симметрия как движение, изменяющее направления на противоположные. Определение термина "параллельный перенос". Свойства скользящей симметрии.
презентация, добавлен 13.01.2018 - 103. Свойства гиперболы
Понятие гиперболы как геометрического места точек разности расстояний. Процесс построения канонического уравнения. Характеристика главных свойств гиперболы. Понятие параболы как геометрического места точек плоскости равноудаленных от фиксированной точки.
лекция, добавлен 23.10.2013 Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.
контрольная работа, добавлен 29.09.2013Обзор одного из направлений векторного исчисления – геометрического. Характеристика сведений о научной деятельности Германа Грассмана. Анализ основ его учения о протяженности, расширении свойств евклидовой плоской геометрии на n-мерное пространство.
статья, добавлен 26.04.2019Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.
учебное пособие, добавлен 13.04.2019Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.
контрольная работа, добавлен 29.11.2015Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.
курс лекций, добавлен 22.11.2015Совокупность всех прямых, проходящих через некоторую точку плоскости. Уравнение прямой проходящей через две фиксированные точки. Текущая точка с переменными координатами. Взаимное расположение на плоскости. Критерий перпендикулярности прямых в уравнении.
презентация, добавлен 01.09.2015Программный алгоритм построения луча, отраженного от поверхности общего вида. Вычисление координат точки пересечения луча с поверхностью с заданной точностью. Расчет значений свободных членов системы. Определение коэффициентов уравнения лучевой плоскости.
лекция, добавлен 26.09.2016Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.
учебное пособие, добавлен 15.04.2014Рассмотрение свойственных особенностей центрально-симметричных фигур. Исследование основ построения правильного многоугольника. Изучение букв латинского алфавита, имеющих центр симметрии. Характеристика основных аспектов преобразования плоскости.
презентация, добавлен 09.03.2015Взаимное расположение точек и прямых в пространстве и на плоскости. Уравнение прямой по точке и вектору нормали, заданной угловым коэффициентом. Параметрические и канонические уравнения прямой в пространстве. Уравнение прямой, проходящей через две точки.
курсовая работа, добавлен 08.12.2015Точка встречи как точка пересечения прямой и плоскости, закономерности ее построения. Общие правила построения линий взаимного пересечения геометрических тел. Пересечение прямой с поверхностями геометрических тел. Взаимное пересечение тел вращения.
методичка, добавлен 07.12.2013- 115. Аксиомы планиметрии
Характеристика аксиоматического метода построения научной теории, Особенности аксиом принадлежности, измерения, расположения, откладывания, параллельности, которые составляют основания планиметрии. Анализ научных трудов Евклида и геометрии Лобачевского.
доклад, добавлен 29.03.2010 Сущностная характеристика и особенности геометрии Лобачевского и Римана. Примеры теорем Неевклидовых геометрий. Неевклидовы геометрии в плане дифференциальной геометрии и в виде проективных моделей. Основные свойства и специфика линейных преобразований.
курсовая работа, добавлен 23.04.2011Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.
шпаргалка, добавлен 23.01.2011Частные случаи уравнений плоскости. Сущность параметрического и канонического уравнения, взаимное расположение прямых. Нормальное уравнение плоскости, специальные виды уравнений. Решение уравнений с направляющим вектором. Пример общего уравнения прямой.
презентация, добавлен 21.09.2017Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой. Логичность способов нахождения расстояния от точки M1 к прямой a, которые заданы в прямоугольной декартовой системе координат Oxy на плоскости.
курсовая работа, добавлен 26.02.2014Описание уравнения прямой, проходящей через две точки, общее уравнение плоскости, проходящей через перпендикуляры, опущенные из точки на плоскости. Поиск абсциссы точки пересечения прямой с координатной плоскостью, уравнение касательной к окружности.
контрольная работа, добавлен 24.09.2018Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.
учебное пособие, добавлен 06.09.2017Зарождение геометрии в Древнем Египте. Элементарная планиметрия: аксиомы и постулаты. Названия и площади многоугольников. Примеры элементарных геометрических доказательств. Стереометрия: определение плоскости, свойства многогранника, призмы, пирамиды.
лекция, добавлен 20.04.2010Аксиома — утверждение, принимаемое без доказательства. Аксиомы принадлежности точек и прямых. Теоремы - утверждения геометрии, которые доказываются на основании аксиом и ранее доказанных утверждений. Аксиомы расположения точек на прямой и плоскости.
презентация, добавлен 13.04.2012Рассмотрение на евклидовой плоскости системы ортонормированных координат. Операции над комплексными числами. Теория стереографической проекции сферы на плоскость. Теорема интегрирования абелевых дифференциалов. Косы как деформирующиеся наборы точек.
учебное пособие, добавлен 28.12.2013Обозначение множества точек на отрезке прямой плоскости. Характеристика коллинеарных векторов расположенных на одной либо на параллельных прямых. Анализ правил сложения на примере треугольника и параллелограмма. Обзор проекции произведения слагаемых.
лекция, добавлен 29.09.2013