Исчезновение фигур

Парадокс с линиями: принцип скрытого перераспределения. Исчезновение и появление плоских фигур. Связь парадокса шахматной доски с парадоксом вертикальных линий. Варианты с прямоугольниками и квадратами. Числа Фибоначчи. Суммирование площадей фигур.

Подобные документы

  • Понятие и отличительные признаки первообразной функции, требования к ней, характерные свойства, сферы применения. Нахождение площадей плоских фигур. Сущность определенного интеграла и порядок его нахождения, связь с задачей расчета площади плоских фигур.

    задача, добавлен 14.01.2012

  • Выявление методов нахождения площадей плоских фигур в зависимости от заданных условий. Выделение типологии задач на нахождение площадей и обоснование применения метода решения к ним. Разработка задачи прикладного характера и выполнение их решения.

    курсовая работа, добавлен 19.09.2018

  • Понятие термина "геометрия", история возникновения и развития. Геометрия Эйнштейна — Минковского. Роль геометрии в естествознании. Термин “площадь” и ее основные измерения. Старые меры площадей. Теоремы площадей фигур и способы решения задач по ним.

    реферат, добавлен 04.12.2008

  • Рассмотрение математических задач, связанных с шахматной доской и шахматными фигурами. Задача на покрытие шахматной доски костями домино. Рассмотрение шахматной игры и проблем, связанных с ней. Задачи на разрезание и математика шахматных фигур.

    статья, добавлен 06.05.2019

  • Основы арифметики трех лучей, выходящих из одной точки. Свойства произведения двух точек, их графическое доказательство. Коммутативность, ассоциативность и дистрибутивность умножения фигур. Деление фигур самих на себя. Мультипликативная арифметика.

    реферат, добавлен 03.02.2011

  • Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.

    методичка, добавлен 14.12.2016

  • Наука о свойствах геометрических фигур. Что такое геометрия. Геометрия в быту, в архитектуре, в современном дизайне помещений. Природные творения в виде геометрических фигур. Использование геометрических фигур животными. Планиметрия и стереометрия.

    презентация, добавлен 27.09.2012

  • Ось симметрии как прямая, относительно которой данные фигуры симметричны. Равность симметричных фигур. Геометрическое построение симметричных фигур, совмещение передвижением по плоскости фигур. Симметричные фигуры в природе, строительстве и украшениях.

    презентация, добавлен 26.04.2014

  • Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.

    учебное пособие, добавлен 19.12.2013

  • История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.

    реферат, добавлен 19.10.2010

  • Правила решения задач на построение геометрических фигур в координатной плоскости с применением циркуля и линейки. Алгебраический метод получения отрезка. Формульные выражение для вычисления корней квадратного уравнения. Понятие однородных функций.

    контрольная работа, добавлен 25.01.2015

  • Создание изображений невозможных фигур, использование их на занятиях по математике для развития пространственного мышления учащихся, творческих людей, склонных к изобретательству. Создание Оскаром Рутерсвардом различных геометрических трехмерных фигур.

    статья, добавлен 22.02.2019

  • Основная задача дифференциального исчисления. Нахождение углового коэффициента касательной к графику кривой. Максимумы и минимумы. Формулы нахождения производных. Линейные аппроксимации. Изучении площадей криволинейных плоских фигур. Частные производные.

    лекция, добавлен 21.04.2010

  • История зарождения системы измерений. Становление геометрии как науки. Определение размера части плоскости, заключенной внутри плоской замкнутой фигуры. Исследование единиц измерения площади. Рассмотрение теорем о площадях фигур и их доказательство.

    реферат, добавлен 02.11.2015

  • Дифференциальное исчисление функций, геометрический и физический смысл ее производной. Логарифмическое дифференцирование; интегральное исчисление; градиент. Нахождение площадей плоских фигур. Геометрические и физические приложения кратных интегралов.

    курс лекций, добавлен 29.06.2016

  • Понятие планиметрии (свойства фигур на плоскости) и стереометрии (свойства фигур в пространстве). Основные модели геометрических тел: пирамида, цилиндр, шар, конус, куб и параллелепипед. Сферы применения стереометрии. Некоторые следствия из аксиом.

    презентация, добавлен 13.04.2012

  • Условие принадлежности точки поверхности геометрической фигуры. Проецирующее положение геометрических фигур. Построение линии пересечения геометрических фигур. Перспектива прямой линии и параллельных прямых. Рассмотрение проекции с числовыми отметками.

    учебное пособие, добавлен 13.09.2017

  • Понятие первообразной и особенности теоремы о ней. Неопределенный интеграл и его свойства. Замена переменной и интегрирование по частям в неопределенном интеграле. Интегрирование дробей и иррациональных выражений. Вычисление площадей плоских фигур.

    реферат, добавлен 20.10.2010

  • Понятие планиметрии (свойства фигур на плоскости) и стереометрии (свойства фигур в пространстве). Виды стереометрических тел: конус, призма, цилиндр, параллелепипед. Характеристика аксиом стереометрии, их доказательство. Способы задания плоскостей.

    презентация, добавлен 13.04.2012

  • Понятие движения в геометрии, отображения, образы и композиции отображений. Определение параллельного переноса и его основные свойства. Особенности центральной и зеркальной симметрии, поворот вокруг прямой. Свойства фигур вращения и осевая симметрия.

    лекция, добавлен 31.01.2010

  • Формирование пространственного воображения и уровня логической культуры. Анализ сущности понятия гомотетии как преобразования подобия фигур. Свойства и область применения гомотетии. Преимущества решения практических задач с помощью гомотетии и движения.

    презентация, добавлен 19.03.2021

  • Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.

    курс лекций, добавлен 23.10.2013

  • Геометрия - раздел математики, изучающий пространственные отношения и формы. Составление списка фамилий, в которых встречаются названия геометрических фигур. Группа фамилий, которые можно объединить по одному признаку. Значение фамилии для науки.

    практическая работа, добавлен 19.11.2016

  • Методика определения определенного интеграла. Нахождение площадей плоских фигур. "Неопределенный интеграл" или "множество всех первообразных", основные понятия и формулы. Нахождение интеграла (интегрирование), исходя из его геометрического смысла.

    контрольная работа, добавлен 11.11.2010

  • Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.

    курсовая работа, добавлен 13.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.