Элементарная математика

Определение основных понятий элементарной математики. Операции над множествами и законы для подмножеств: коммутативности (переместительный закон) и ассоциативности (сочетательный закон). Отображения, а также отношения эквивалентности и упорядоченности.

Подобные документы

  • Рассмотрение биографии великих ученых и их основных заслуг в области математики. Характеристика достижений и научных открытий Евклида, Пифагора, И. Ньютона, Б. Паскаля, Г. Лейбница, Р. Декарда, Л. Эйлера, Б. Римана, К. Гаусса, А. Тьюринга и Э. Уайлса.

    презентация, добавлен 04.05.2017

  • Характеристика основных высказываний известных людей о науке, которая изучает величины. Главная особенность применения математики в медицине, пекарне, торговле, строительстве и в быту. Использование чисел в пословицах, поговорках и сочинениях учащихся.

    презентация, добавлен 07.12.2014

  • Исследование особенностей обозначения числовых матриц. Линейные операции над ними. Характеристика основ коммутативного закона умножения. Аспекты проверки свойства ассоциативности. Рассмотрение основных функций вырожденных и невырожденных матриц.

    реферат, добавлен 19.06.2015

  • Обзор идей философии математики К. Райта и Б. Хейла. Описание одной из проблем этого направления - связи понятий первого и второго уровня в программе основания математики. Основная идея Райта и Хейла, особенности и условия применения принципа Юма.

    статья, добавлен 28.11.2018

  • Математика как часть человеческой культуры, ключ к познанию окружающего мира, база научно-технического прогресса. Этапы развития математики. Ее роль в науке, интеллектуальном развитии личности, познании мира. Особенности математического стиля мышления.

    реферат, добавлен 29.09.2014

  • Изучение специфического мышления математика. Характеристика математики как искусства, сферы творческий деятельности. Анализ практического применения математики. Изучение аргументов Г.Г. Харди в защиту математики как профессиональной деятельности.

    статья, добавлен 31.03.2019

  • Множества и операции над ними. Представление множеств и отношений в программах. Алгоритмы генерации множеств и задачи информационного поиска. Алгоритм выполнения операции минимум. Бинарное поисковое дерево. Генерация всех подмножеств универсума.

    контрольная работа, добавлен 23.04.2013

  • Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.

    реферат, добавлен 31.01.2014

  • Основные теоретические положения нормального закона распределения (закон распределения Гаусса) уровня ряда, его применение при работе с непрерывно изменяющимися переменными. Способ группирования результатов измерений относительно среднего значения.

    реферат, добавлен 09.02.2011

  • Определение вероятности суммы совместных событий. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон (распределение Гаусса). Функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    презентация, добавлен 10.08.2015

  • Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.

    контрольная работа, добавлен 17.06.2014

  • Закон первой цифры, возможности и области его применения. История возникновения закона Бенфорда. Вероятность нахождения первой цифры в данных, основанных на источниках из реальной жизни. Виды тестов программы "Digital Analysis", разработанной Нигрини.

    реферат, добавлен 21.09.2021

  • Исследование конечных, непрерывных и дискретных вероятностных пространств. Корреляционная теория. Закон больших чисел. Экспоненциальные полиномы и неравенства. Формулы полной вероятности и Байеса. Классические предельные теоремы. Дисперсия и энтропия.

    учебное пособие, добавлен 25.11.2013

  • Отражение информационных открытых систем. Информационный закон отражения. Сравнительная характеристика синергетической и вероятностной теорий информации. Закон сохранения суммы хаоса и порядка. Плоскости множества значений произвольного признака.

    курсовая работа, добавлен 26.04.2017

  • Условные законы распределения непрерывных случайных величин, имеющих непрерывное совместное распределение. Условное математическое ожидание случайной величины. Сущность корреляции. Свойства ковариации. Нормальный закон распределения на плоскости.

    реферат, добавлен 26.01.2012

  • Этапы развития математики как науки. Становление математики в Древней Греции, Индии, Средней Азии. Введение системы координат, методов измерения величин и понятия функции. Вклад русских ученых в развитие математики. Перспективы развития кибернетики.

    реферат, добавлен 18.09.2014

  • Зародження математики (з глибокої давнини до VI-V ст. до нашої ери). Розвиток математики до ХVII століття. Характеристика періоду математики змінних величин ХVII-XIX століття. Аналіз періоду сучасної математики. Внески вчених-математиків у розвиток науки.

    реферат, добавлен 23.10.2015

  • Изучение связи между математикой и искусством. Расширение представления о математике и ее места в жизни человека. Неоднократные попытки рассматривать музыку, как один из объектов изучения математики. Симметрия в танце. Математика в архитектуре.

    реферат, добавлен 17.05.2022

  • Содержание и специфика основных законов логики. Свойства человеческой мысли вычленять вещи из окружающего мира и рассматривать их раздельно. Диалектические противоречия процесса познания и их выражения в форме формально-логических противоречий и гипотез.

    реферат, добавлен 30.10.2010

  • Изучение математического значения множества отображения. Анализ симметричности и транзитивности функций. Расчет мощности бесконечного множества. Обзор теоремы подмножеств линейного порядка натуральных чисел. Сопоставление произвольной совокупности.

    лекция, добавлен 18.10.2013

  • Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.

    методичка, добавлен 24.03.2015

  • Поняття та зміст математики як наукового напрямку, предмет та методи її вивчення. Чотири періоди розвитку математики, їх видатні представники. Джерела основних математичний понять. Характеристика праць та біографічні відомості про жінок-математиків.

    реферат, добавлен 24.01.2011

  • Особенность нахождения отношения эквивалентности на множестве А. Построение таблиц истинности для высказываний. Изучение замыкания над множеством булевой функции. Проведение исследования класса линейных функций. Нахождение максимального потока в сети.

    курсовая работа, добавлен 05.12.2019

  • Возникновение и развитие математики как способа решения жизненно-важных для человека задач. Первые вычисления и Вавилон как родина математического знания, использование математики в древности. Современные цифры, вклады стран в развитие математики.

    творческая работа, добавлен 03.05.2019

  • Особенности присутствия математики во всех отраслях нашей жизни. Математическое моделирование в архитектуре. Современный характер применения уже созданных математических теорий к техническим проблемам. Математика в физике и астрономии, химии и биологии.

    презентация, добавлен 18.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.