Операции с векторами

Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

Подобные документы

  • Условия и особенности применения элементарной алгебры и тригонометрии в ряде случаев при решении задач на вычисление применение векторов. Методика составления плана решения, а также требования к данному процессу. Выделение неколлинеарных векторов.

    реферат, добавлен 18.06.2015

  • Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.

    лекция, добавлен 30.11.2010

  • Методика построения прямоугольных декартовых координат. Абсцисса как число, выражающее в некотором масштабе расстояние точки от координатной оси. Характеристика основных свойств векторного сложения. Алгоритм смешанного произведения трех векторов.

    презентация, добавлен 31.10.2016

  • Анализ способов определения скалярного произведения. Характеристика ортогональных векторов. Линейный оператор как обобщение линейной числовой функции на случай более общего множества аргументов и значений. Знакомство с примерами евклидовых пространств.

    контрольная работа, добавлен 12.11.2013

  • Линия пересечения двух плоскостей. Уравнение прямой, проходящей через заданную точку параллельно данному вектору. Определение угла из скалярного произведения векторов. Изучение условия коллинеарности. Признак перпендикулярности и параллельности прямых.

    презентация, добавлен 21.09.2013

  • Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.

    шпаргалка, добавлен 18.03.2013

  • Матрицы и определители, операции над ними. Линейная зависимость системы векторов, свойства векторного произведения. Комплексные числа. Прямая в пространстве. Взаимное расположение прямой и плоскости. Кривые второго порядка. Решение систем уравнений.

    методичка, добавлен 22.12.2010

  • Понятие и сущность вектора, скалярные и векторные величины. Общая характеристика особенностей векторных величин. Схематическое изображение векторов, их описание и характеристика построения. Описание сложных векторов и сущность и положения закона сложения.

    реферат, добавлен 01.03.2009

  • Суть ортонормированной (декартовой) системой координат, в которой единицы измерения по всем осям равны друг другу. Действия над векторами в координатной форме, вычисление направляющих косинусов. Уравнение окружности, общее преобразование систем координат.

    контрольная работа, добавлен 15.05.2011

  • Розгляд поняття вектора. Основні лінійні операції над векторами. Проекція вектора на вісь. Основні властивості проекцій. Декартова прямокутна система координат. Характеристика напрямних косинусів. Лінійні операції над векторами, заданими проекціями.

    лекция, добавлен 30.10.2014

  • Особенность выполнения различных операций с матрицами. Исследование скалярного и векторного произведения векторов. Применение матричных функций для решения задач линейной алгебры в MathCAD. Анализ однородных и неоднородных систем линейных уравнений.

    презентация, добавлен 08.04.2018

  • Расчет нахождения модуля вектора, скалярного произведения, векторного и смешанного произведения векторов. Нахождение заданных координат с помощью формулы расчета по методу Крамера. Вычисление вращающего момента силы, периметра и площади треугольника.

    задача, добавлен 31.03.2014

  • Вычисление элементов матрицы суммы. Определитель третьего порядка и правило треугольников. Решение системы линейных уравнений методом Гаусса. Косинус угла между векторами. Уравнение плоскости, проходящей через точку. Объем тетраэдра с заданными вершинами.

    контрольная работа, добавлен 30.09.2013

  • Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.

    курсовая работа, добавлен 17.01.2011

  • Рассмотрение содержания арифметической теории квадратичных форм. Изучение основ теории билинейных и квадратичных форм. Линейные операции над векторами евклидова пространства. Неравенство Коши-Буняковского. Основные свойства квадратической формы.

    реферат, добавлен 31.12.2020

  • Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.

    лекция, добавлен 09.07.2015

  • Назначение матриц в системах линейных уравнений, операции над матрицами, правила их сложения матриц и умножения на скаляр, транспонирование произведения двух матриц. Понятие и свойства определителя квадратной матрицы, доказательство теоремы Коши-Бине.

    курсовая работа, добавлен 11.01.2015

  • Метод координат в пространстве. Решение задачи на многогранник, цилиндр, конус. Определение координат вектора разности. Условие компланарности. Введение прямоугольной системы координат. Расчет длинны, используя формулу скалярного произведения векторов.

    контрольная работа, добавлен 26.02.2011

  • Матрица коэффициентов при неизвестных. Вычисление определителя и алгебраических дополнений. Скалярное произведение векторов. Уравнение прямой проходящей через точки. Разложение числителя и знаменателя дроби на множители. Нахождение производных функций.

    контрольная работа, добавлен 25.03.2014

  • Проведение исследования линейного пространства с некоторым образом введенной операцией "скалярного произведения". Анализ изучения ортогональных и ортонормированных систем векторов. Характеристика ортогонального дополнения к линейному подпространству.

    практическая работа, добавлен 12.06.2021

  • Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.

    методичка, добавлен 14.12.2010

  • Понятийный аппарат векторного метода решения задач. Основные свойства произведения вектора на число. Методика решения задач аффинной геометрии векторным методом. Задачи, связанные с доказательством параллельности прямых и отрезков, прямых и плоскости.

    курсовая работа, добавлен 12.02.2013

  • Цифровой дифференциальный анализатор для генерации векторов. Комплексное изучение общих требований к изображению отрезка. Симметричный алгоритм ЦДА. Предварительное вычисление количества узлов. Вычисление приращения координат, генерация отрезков.

    презентация, добавлен 05.11.2014

  • Понятие, виды и формулы расчета обратной, присоединенной и нулевой матриц, определение суммы и произведения, доказательство свойства умножения ее на число, свойства линейных операций. Определители для двух неравных квадратных матриц одинакового размера.

    лекция, добавлен 26.01.2014

  • Линейная комбинация векторов - сумма произведений направленных отрезков на некоторые вещественные числа. Основные неравенства, которые возникают из при сложении векторов. Абсолютная величина векторного отрезка - расстояние между его началом и концом.

    лекция, добавлен 06.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.