Операции с векторами

Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

Подобные документы

  • Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.

    лекция, добавлен 26.01.2014

  • Условия ортогональности линейного преобразования. Независимость ортонормированной системы векторов. Стандартное евклидово пространство и ортогональные матрицы. Геометрический смысл собственного преобразования А. Доказательства леммы. Индукция векторов.

    лекция, добавлен 30.04.2014

  • Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.

    методичка, добавлен 19.09.2015

  • Определение евклидова пространства. Длина вектора и угол между ними. Векторное неравенство Коши-Буняковского. Особенности использования неравенства Коши-Буняковского при решении задач по алгебре. Примеры применения скалярного произведения векторов.

    курсовая работа, добавлен 15.12.2010

  • Понятие системы координат в геометрии. Анализ примеров положительного и неположительного скалярного произведения векторов четырехмерного пространства. Псевдоевклидово пространство, особенности его движения. Кривые в псевдоевклидовом пространстве.

    курс лекций, добавлен 01.09.2017

  • Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.

    курс лекций, добавлен 23.04.2016

  • Евклидово пространство – линейное пространство с некоторым образом введенной операцией "скалярного произведения". Неравенство Коши–Буняковского. Ортогональные и ортонормированные системы векторов. Ортогональное дополнение к линейному подпространству.

    контрольная работа, добавлен 01.07.2012

  • Определение преимуществ векторного метода для доказательства некоторых теорем и решения задач по планиметрии. Доказательства теорем векторным методом. Доказательства основных соотношений, применяемых при решении задач. Разложения неколлинеарных векторов.

    презентация, добавлен 10.04.2013

  • Обозначение множества точек на отрезке прямой плоскости. Характеристика коллинеарных векторов расположенных на одной либо на параллельных прямых. Анализ правил сложения на примере треугольника и параллелограмма. Обзор проекции произведения слагаемых.

    лекция, добавлен 29.09.2013

  • Аксиомы линейного пространства. Операции сложения и умножения элемента на число. Линейная комбинация векторов с коэффициентами. Определение координат вектора относительно базиса. Разложение элемента по базису. Понятие линейной векторной зависимости.

    лекция, добавлен 29.09.2013

  • Алгоритм решения проблемы поиска собственных значений и собственных векторов. Обзор технологий разработки параллельного обеспечения. Реализация параллельных программ с использованием технологий OpenMP и CUDA. Место задачи в современном естествознании.

    курсовая работа, добавлен 24.09.2021

  • Анализ понятия матрицы: классификация и основные операции над ними. Определители квадратной матрицы и их свойства. Теоремы Лапласа и аннулирования. Обратная матрица: определение понятий, ее единственность, а также алгоритм ее построения и свойства.

    курсовая работа, добавлен 21.04.2011

  • Базис в трёхмерном пространстве как любая упорядоченная тройка линейно независимых векторов. Методика определения коэффициентов разложения векторов на плоскости. Анализ условий, при выполнении которых ортогональный базис называется ортонормированным.

    контрольная работа, добавлен 29.02.2020

  • Изучение понятий операций конъюнкции (логического умножения) и дизъюнкции (логическое сложение) над предикатами, заданными на множествах. Рассмотрение их свойств и приведение примеров доказательств равенства и тождества с использованием кругов Эйлера.

    презентация, добавлен 05.01.2014

  • Понятия общей топологии. Многообразия и касательные вектора. Тензоры: первые определения и свойства. Обычное частное дифференцирование. Сравнение касательных векторов в разных точках. Интегрирование дифференциальных форм. Расчет ковариантной производной.

    курс лекций, добавлен 02.05.2014

  • Геометрическая интерпретация комплексных чисел и действий над ними. Формулы длины отрезка и скалярного произведения векторов. Параллельность, коллинеарность, перпендикулярность. Двойное отношение четырёх точек плоскости. Полюсы относительно окружности.

    учебное пособие, добавлен 28.12.2013

  • Векторное пространство как совокупность всех свободных векторов трёхмерного пространства. Евклидовое или гильбертовое пространство со скалярным произведением, определяемым в векторном исчислении. Понятие ортогональных и перпендикулярных векторов.

    контрольная работа, добавлен 11.03.2011

  • Понятие окружности и круга, основные теоремы и свойства. Касание прямой и окружности, случаи их взаимного расположения. Вписанные и описанные фигуры. Относительное положение двух окружностей. Свойства хорд и расстояние до них. Определение длин и площадей.

    презентация, добавлен 07.05.2014

  • Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.

    книга, добавлен 28.12.2013

  • Нахождение внутреннего угла треугольника с точностью до градуса, длины высоты, опущенной из вершины, точки пересечения высот и координат векторов. Уравнение медианы, проведенной через вершину. Система линейных неравенств, определяющих треугольник.

    контрольная работа, добавлен 13.06.2016

  • Элементы косого четырехугольника и их свойства. Классические теоремы о замечательных точках косого четырехугольника. Зависимость между углами, сторонами и диагоналями косого четырехугольника. Основные признаки, свойства и теоремы косого параллелограмма.

    дипломная работа, добавлен 08.03.2013

  • Действия над векторами. Декартова прямоугольная система координат, понятие базиса. Уравнение плоскости в пространстве. Нахождение начальной точки и направляющего вектора прямой. Кривые линии II порядка: парабола и гипербола. Основные теоремы о пределах.

    шпаргалка, добавлен 14.01.2010

  • Геометрический смысл модуля числа - расстояния от начала отсчёта до точки, которой соответствует это число на координатной прямой. Бесконечно малая функция и ее свойства. Основные теоремы о пределах, их единственность, арифметические операции над ними.

    реферат, добавлен 29.11.2016

  • Взаимное расположение прямой и плоскости в декартовой системе координат. Уравнение плоскости, проходящей через точку параллельно горизонтальной, фронтальной и профильной прямым. Свойства нормального и направляющего векторов плоскости в пространстве.

    контрольная работа, добавлен 01.03.2017

  • Описание класса простых и класса составных фреймов Парсеваля. Необходимые и достаточные условия простоты фреймов, не содержащих нулевых или коллинеарных векторов, в конечномерных пространствах. Величина взаимной когерентности векторов фрейма Парсеваля.

    статья, добавлен 31.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.