Свойства функций

Основные понятия функций. Числовая и сходящиеся последовательности. Бесконечный, односторонний, замечательный пределы и пределы на бесконечности. Принцип сходимости, предел функции и теорема Гейне. Непрерывность функции, композиции и точки разрыва.

Подобные документы

  • Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.

    курс лекций, добавлен 23.10.2013

  • Понятие линейного, нормированного и предгильбертового пространства. Последовательности точек метрического пространства, предел и непрерывность его отображений. Необходимое условие компактности множеств. Принцип Баноха сжимающих отображений, их свойства.

    лекция, добавлен 08.11.2015

  • Решение уравнения и построение его на комплексной плоскости. Определение точек разрыва функции и указание характера точек разрыва. Нахождение производных функций. Расчет экстремумов функции с использованием второй производной. Разложение функции в ряд.

    контрольная работа, добавлен 22.04.2018

  • Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.

    курс лекций, добавлен 22.01.2013

  • Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.

    лекция, добавлен 05.03.2009

  • Основные свойства и построение графиков степенной, показательной, логарифмической, тригонометрической и обратной тригонометрической функций. Определение элементарных функций, области их определения и значений. Примеры элементарных функций и их свойства.

    курсовая работа, добавлен 30.04.2014

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Представление аналитической функции в заданном виде. Нахождение значения производной в заданной точке. Разложение функции в ряд Лорана в окрестности точки. Определение области сходимости ряда и вычисление интеграла по контуру при помощи вычетов.

    контрольная работа, добавлен 20.12.2013

  • Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.

    курсовая работа, добавлен 30.11.2012

  • Определение предела последовательности, теорема о единственности предела. Классификация пределов, теорема о предельном переходе в неравенствах и теорема о двух милиционерах. Примеры интегрирования по частям, решение простых и неопределенных интегралов.

    контрольная работа, добавлен 19.05.2014

  • Вычисление предела функции. Составление уравнения касательных, перпендикулярных прямой, проходящей через заданные точки, к графику функции. Нахождение неопределенного и определенного интегралов. Расчет площади криволинейной трапеции, ограниченной линиями.

    контрольная работа, добавлен 21.09.2013

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Множество значений, принимаемых функцией в результате ее применения. Виды преобразований графиков функций. Предел монотонной и ограниченной последовательности. Интегрирование рациональных функций. Интегрирование по частям в определенном интеграле.

    шпаргалка, добавлен 10.03.2014

  • Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.

    контрольная работа, добавлен 06.02.2012

  • Вычисление пределов функций без использования правила Лопиталя. Нахождение производных функций с использованием формул и правил дифференцирования. Нахождение наибольшего и наименьшего значения функции на отрезке. Нахождение интервалов монотонности.

    контрольная работа, добавлен 06.01.2015

  • Предел отношения синуса к его аргументу, который равен единице в случае, когда аргумент стремится к нулю. Применение первого замечательного предела на практике. Круг радиуса R с центром в точке О. Расчет площадей треугольников. Преобразование синуса.

    презентация, добавлен 21.09.2013

  • Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.

    контрольная работа, добавлен 27.11.2013

  • Характеристики алгебраических функций: монотонность, непрерывность, четность, выпуклость, ограниченность, наибольшее и наименьшее значение. Алгоритм описания свойств функций. Рассмотрение, графическое представление и описание свойств некоторых функций.

    презентация, добавлен 17.12.2014

  • Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.

    презентация, добавлен 13.02.2016

  • Определение производной функции через предел. Общепринятые обозначения. Дифференцируемость. Геометрический и физический смысл производной. Производные высших порядков. Способы записи производных. Правила дифференцирования. Таблица производных функций.

    реферат, добавлен 07.01.2023

  • Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.

    контрольная работа, добавлен 13.10.2013

  • Применение на практике первого и второго замечательного предела. Использование в практических задачах формулы, которая представляет собой следствие второго замечательного предела. Последствия перестановки числителя и знаменателя в данных пределах.

    лекция, добавлен 15.04.2014

  • Характеристика основных способов задания выражения. Главный анализ последовательностей и их пределов. Особенность концепций раскрытия неопределенностей. Непрерывность функции в точке и на интервале. Главные свойства бесконечно малой и большой цепи.

    лекция, добавлен 01.04.2015

  • Разложение функции по формуле Маклорена и в ряд Тейлора. Степенной порядок малости. Рост бесконечно большой в окрестности точки разрыва. Разложение по формуле Маклорена в окрестности бесконечно удаленной точки. Асимптоты графика функции на бесконечности.

    презентация, добавлен 28.09.2017

  • Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.

    презентация, добавлен 26.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.