Основные методы решения тригонометрических уравнений
Метод разложения на множители, его применение. Метод замены переменных и сведение к алгебраическим уравнениям. Универсальная тригонометрическая подстановка. Порядок введения вспомогательного аргумента. Решение системы тригонометрических уравнений.
Подобные документы
Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.
реферат, добавлен 27.10.2019- 27. Численные методы
Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.
методичка, добавлен 26.09.2016 Обратные тригонометрические функции (аркфункции): определение и свойства. Теоремы об аркфункциях. Доказательство числовых тождеств. Решение уравнений и неравенств с аркфункциями. Использование свойств монотонности обратных тригонометрических функций.
контрольная работа, добавлен 22.04.2012Рассмотрение начальной задачи для систем уравнений и использование развитой методики дополнительного аргумента для решения задачи. Применение развитой методики для доказательства существования решения новых видов векторно-матричных нелинейных уравнений.
статья, добавлен 07.08.2020Система, имеющая более чем одно решение (неопределенная). Метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида. Применение метода Крамера.
презентация, добавлен 23.08.2016Меры измерения углов: градусная, радианная. Понятие тангенса, косинуса, синуса, арктангенса и котангенса, их геометрический смысл. Графики тригонометрических и обратных тригонометрических функций. Основные тригонометрические тождества и следствия из них.
лекция, добавлен 18.04.2012Очерк возникновения и применения тригонометрических вычислений. Открытие фактической связи отрезков треугольника с окружностью. Анализ геометрического определения тригонометрических тождеств. Обзор решений дифференциальных и функциональных уравнений.
контрольная работа, добавлен 05.10.2013Задачи, приводящие к решению разрешающих уравнений, их применение. Решение разрешающих уравнений: метод определителей, обратной матрицы, градиента, разложения в ряд Тейлора, формулы приближенного дифференцирования. Аспекты разработки алгоритмов.
статья, добавлен 13.06.2015Стандартная схема решения текстовой задачи. Задачи на движение, составление уравнений при решении. Решение системы методом замены переменных. Задачи на смеси и сплавы, общее понятие про "концентрацию". Главные особенности решения задач на проценты.
методичка, добавлен 10.01.2012Развитие землемерения, астрономии и строительного дела как одни из причин возникновения тригонометрии. Характеристика ключевых свойств тригонометрических функций. Синус - отношение противолежащего катета к гипотенузе. Основные формулы двойного угла.
презентация, добавлен 03.04.2015Классические итерационные метода. Релаксация как методика уточнения решения. Прямые методы решения системы линейных алгебраических уравнений. Особенности итерационного метода Якоби, примеры его применения. Метод простых итераций, условия сходимости.
курсовая работа, добавлен 25.01.2017Точные методы решения систем линейных алгебраических уравнений. Классификация погрешностей, возникающих при решении системы линейных алгебраических уравнений. Метод А.М. Данилевского нахождения канонической формы Фробениуса. Итерационный метод вращений.
курсовая работа, добавлен 11.03.2014Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.
реферат, добавлен 06.03.2010Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).
реферат, добавлен 01.11.2019Решение систем линейных алгебраических уравнений, методы Гаусса и Зейделя. Схемы частичного и полного выбора, приведение системы к виду, удобному для итераций. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений.
контрольная работа, добавлен 07.05.2009Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений
реферат, добавлен 26.02.2010Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.
контрольная работа, добавлен 12.12.2012Пример решения задачи линейного программирования с ограничениями-равенствами. Решение матрицы системы линейных уравнений. Вариант задачи линейного программирования в общем случае (при произвольном числе свободных переменных), применение симплекс-метода.
контрольная работа, добавлен 25.10.2009Рассмотрение различных способов решения тригонометрических уравнений. Ознакомление с понятием и историей возниконовения тригонометрии. Составление алгоритма решения задания. Описание воспитания самостоятельности и творческого отношения к деятельности.
презентация, добавлен 19.11.2013Матричная запись линейной системы. Матричный метод решений. Решение системы по правилу Крамера. Формулировка теоремы Кронекера-Капелли, алгоритм решения системы. Метод Гаусса или метод исключения неизвестных, элементарные преобразования над строками.
контрольная работа, добавлен 02.04.2012Описание разновидностей потенциалов, свойств потенциалов простого и двойного слоя. Постановка и решение краевых задач для уравнений Лапласа и Пуассона в пространстве, их сведение к интегральным уравнениям. Нахождение объемного потенциала однородного шара.
курсовая работа, добавлен 18.12.2016Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.
статья, добавлен 27.11.2018Основные сведения о системах нелинейных уравнений. Понятие о линеаризованных уравнениях. Определение малой окрестности и выбор в ней начального приближения к решению. Методы простой итерации, Зейделя, Ньютона, наискорейшего спуска. Сходимость методов.
реферат, добавлен 14.12.2010Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.
курсовая работа, добавлен 17.04.2014Решение обыкновенных дифференциальных уравнений с заданными условиями на границах интервала и в заданных точках. Метод конечных разностей. Геометрический смысл производной. Метод прогонки, реализующий прямой и обратный ход. Выравнивание системы в столбец.
лекция, добавлен 06.04.2014