Основные методы решения тригонометрических уравнений
Метод разложения на множители, его применение. Метод замены переменных и сведение к алгебраическим уравнениям. Универсальная тригонометрическая подстановка. Порядок введения вспомогательного аргумента. Решение системы тригонометрических уравнений.
Подобные документы
Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.
контрольная работа, добавлен 06.08.2013Сущность и структура линейных уравнений, их разновидности и свойства. Критерий совместности системы линейных уравнений, исследование теоремы Кронекера-Капелли. Метод Гаусса: содержание и назначение, сферы применения. Свойство свободных переменных.
лекция, добавлен 26.03.2012Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010- 54. История алгебры
Методы решения уравнений в странах древнего мира. Решение задач, решаемых уравнениями первой степени. Смысл решения Ахмеса и умножение смешанного числа. Метод одного ложного положения и способ фальшивого правила. Правила решения квадратных уравнений.
реферат, добавлен 26.09.2011 - 55. Метод Эйлера
Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.
доклад, добавлен 09.10.2012 Системы линейных алгебраических уравнений. Метод Гаусса, Зейделя. Сравнение прямых и итерационных методов. Решения систем линейных уравнений по методу Гаусса, Зейделя. Схема единственного деления. Приведение системы к виду, удобному для итераций.
контрольная работа, добавлен 06.09.2008История формирования и развития квадратных уравнений: направления и этапы их исследования в Древнем Вавилоне, Индии, Европе XIII–XVII вв. Схема нахождения корня. Способы решения данного типа уравнений: Разложение на множители, выделение полного квадрата.
методичка, добавлен 18.12.2012Методика введения определений тригонометрических функций углов и изучения тригонометрических функций в курсе алгебры. Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению.
реферат, добавлен 06.03.2022Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.
реферат, добавлен 16.03.2012- 60. Ряды Фурье
Члены тригонометрических рядов. Свойство системы тригонометрических функций. Ряд Тейлора. Особенности ряда Фурье четной и нечетной функции. Рабочие формулы для разложения функции в ряд Фурье. Применение программы MatLab для вычисления коэффициентов ряда.
контрольная работа, добавлен 23.04.2011 Понятие о тригонометрическом выражении. Тригонометрические функции и формулы тригонометрии, используемые для преобразования тригонометрических выражений. Знаки тригонометрических функций. Примеры решения задач с использованием формул преобразования.
презентация, добавлен 23.10.2013Комбинированный метод как метод уточнения корней нелинейных алгебраических или трансцендентных уравнений. Нахождение интервала с существующим единственным корнем. Сохранение знаков на исследуемом отрезке. Сокращение интервалов путём половинного деления.
отчет по практике, добавлен 14.10.2015Применение приближенных (численных) способов нахождения корней системы матричных уравнений с большим числом неизвестных. Содержание методов простых итераций, Зейделя, релаксации, используемых в решении уравнений. Теорема сходимости итерационного процесса.
лекция, добавлен 21.09.2017Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.
курс лекций, добавлен 19.09.2015Метод сеток решения уравнений параболического типа, оценка погрешности и сходимость метода сеток. Прогонка решения разностной задачи. Доказательство устойчивости разностной схемы. Разработка программного модуля, описание логики. Пример работы программы.
курсовая работа, добавлен 25.11.2011- 66. Решение пределов
Изучение геометрического смысла предела. Старшая степень числителя и знаменателя. Пределы с неопределенностью и метод их решения. Разложение числителя и знаменателя на множители. Использование формулы разности квадратов. Решение квадратных уравнений.
лекция, добавлен 04.03.2014 Решение нелинейных алгебраических уравнений, подходы и методики данного процесса, его порядок и этапы. Решение системы двух нелинейных алгебраических уравнений. Определитель матрицы, ее умножение и сложение. Системы линейных алгебраических уравнений.
курсовая работа, добавлен 26.07.2012Главные и свободные неизвестные, входящие в выбранный минор. Использование правила Крамера. Частное решение системы. Пример решения системы линейных уравнений. Применение метода Гаусса (последовательного исключения переменных). Сравнение рангов матриц.
лекция, добавлен 26.01.2014Решение уравнений и систем в различных кольцах и полях как классическая задача алгебры и теории чисел. Алгоритмы решения полиномиальных уравнений и систем в полях алгебраических чисел, основанные на лемме о подъеме решения полиномиального сравнения.
статья, добавлен 18.01.2021Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.
учебное пособие, добавлен 18.09.2012Понятие уравнений третьей степени. Исторические факты решения уравнений высших степеней. Решение уравнений третьей степени с целыми коэффициентами. Формула Кардано для приведенного кубического уравнения. Общие способы решения кубических уравнений.
практическая работа, добавлен 22.10.2019Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.
презентация, добавлен 06.12.2011Решение алгебраических, нелинейных и трансцендентных уравнений. Метод половинного деления, простых итераций, касательных и секущих. Численные методы вычисления определенных интегралов. Общая формулировка методов Рунге-Кутты. Строгие оценки погрешности.
творческая работа, добавлен 26.06.2011Решение задачи Коши в случае переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Начало счета методом прогонки.
научная работа, добавлен 01.02.2013Разностные методы решения краевых задач для уравнений в частных производных. Методы решения сеточных уравнений - специфическая система линейных алгебраических уравнений. Аппроксимация. Теорема о сходимости разностной схемы. Метод верхней релаксации.
курсовая работа, добавлен 06.05.2015