Элементы теории множеств

Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.

Подобные документы

  • Основные топологические понятия; аксиомы топологии и примеры некоторых соотношений в топологических пространствах. Булева алгебра и регулярные замкнутые множества: булево объединение и булево пересечение произвольного семейства элементов булевой алгебры.

    курсовая работа, добавлен 07.07.2012

  • Понятие частично упорядоченного множества для современной теоретико-множественной математики. Теорема, позволяющая по формуле найти число линейно упорядочиваемых бинарных отношений на множестве из n элементов. Получение рекуррентной формулы уравнения.

    статья, добавлен 30.07.2017

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.

    презентация, добавлен 10.05.2016

  • История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.

    реферат, добавлен 17.06.2018

  • Усвоение межпредметных понятий и их основа формирования целостной естественнонаучной картины мира. Функция как математическое понятие, отражающее связь элементов одного множества с элементами из другого множества. Географические и декартовы координаты.

    реферат, добавлен 01.07.2015

  • Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.

    курсовая работа, добавлен 21.09.2017

  • Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.

    реферат, добавлен 22.05.2017

  • Решение задачи по теории вероятностей. Использование правил дифференцирования и формул для производных степенной и тригонометрической функций, нахождение производных. Отображение данных множеств при помощи кругов Эйлера. Область определения функции.

    контрольная работа, добавлен 30.06.2021

  • Изучение истории развития математики - науки о величинах и количествах. Характеристика основных разделов математики: арифметики, элементарной алгебры, геометрии (планиметрии и стереометрии), теории элементарных функций и элементов анализа. Цифры майя.

    реферат, добавлен 10.11.2011

  • Понятие и сущность, математическое обоснование множеств, их классификация и типы, характеристика и свойства, основные способы задания. Общее описание и принципы реализации операций над множествами: объединение, пересечение, разность и дополнение.

    контрольная работа, добавлен 17.06.2015

  • Комбинаторика - древнейшая и ключевая ветвь математики, изучающая дискретные объекты, множества и комбинации из заданного числа элементов. Перебор и построение дерева возможных вариантов. Комбинаторное правило умножения, примеры конфигураций и задач.

    презентация, добавлен 09.12.2014

  • Поиск способа представления системы как совокупности взаимосвязанных множеств. Обоснование принципов геометрической интерпретации понятий "элемент системы" и "система". Аналогия между геометрией и теорией информации. Информационные свойства пространства.

    статья, добавлен 26.04.2017

  • Эволюция и применение математики в современной науке и технике. Математические начала натуральной философии. Значение трудов Декарта, Ньютона и Галилея. Открытие математических, логических и физических закономерностей. Математика и теория множеств.

    контрольная работа, добавлен 23.03.2010

  • Значение и применение теории бесконечного множества простых чисел. Основы установления сравнительной количественной оценки множеств. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов, численными методами.

    статья, добавлен 26.01.2019

  • Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.

    контрольная работа, добавлен 19.06.2011

  • Основное свойство дроби. Умножение и деление десятичных дробей. Обозначение множества рациональных чисел. Сокращение обыкновенных дробей. Сложение и вычитание десятичных дробей. Десятичное число как удобная форма записи дроби с указанными знаменателями.

    реферат, добавлен 27.09.2009

  • Теория множеств с самопринадлежностью, свойства структурного изоморфизма при описании бесконечных самоподобных множеств. Анализ и описание свойств структурного изоморфизма, прикладная интерпретация этих свойств на предметной области формальных языков.

    статья, добавлен 26.04.2019

  • Системы счисления, понятие множества. Операции над множествами. Графическое изображение множеств, диаграммы Эйлера-Венна. Таблицы истинности высказываний. Расчет бинарного отношения между множествами А и В. Частота появления значения случайной величины.

    шпаргалка, добавлен 30.08.2017

  • История возникновения аксиоматического метода в математике и в гуманитарных науках. Решение учебно-исследовательских задач в университете с использованием систем компьютерной математики. Применение теории нечетких множеств в гуманитарных исследованиях.

    статья, добавлен 17.07.2018

  • Анализ аргументации сторонников и противников тезиса "концептуалистов" и "формалистов". Оценка возможностей воспроизведения доказательства математических теорем в виде строгого логического вывода. Программа унивалентных основ математики В. Воеводского.

    статья, добавлен 26.05.2022

  • Определение и свойства функций действительного переменного, условия непрерывности, дифференцируемости и интегрируемости. Понятие меры функций и множества. Особенности функций комплексного переменного, понятие аналитичности. Интегральная теорема Коши.

    лекция, добавлен 21.04.2010

  • Упорядоченные множества элементов. Структура представления многомерных матриц. Преобразование старшинства индексов. Метод гиперплоскостей для построения выпуклой области множества неупорядоченных элементов. Метод сингулярного разложения матрицы.

    контрольная работа, добавлен 15.01.2018

  • Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.

    лекция, добавлен 29.09.2014

  • Понятие, сущность и характеристика математики и философии как науки. Влияние математики на философию, последствия их роль и описание. Соотношение математики и логики, а также полученные результаты. Понятие об иррациональном числе, особенности исчисления.

    реферат, добавлен 08.02.2009

  • Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.

    курс лекций, добавлен 28.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.