Элементы теории множеств

Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.

Подобные документы

  • Определение множества элементов по переменным и базам, образующих начальную систему данных наблюдений. Исследование операции структуризации и метаоперация в системе порождения новых данных. Граф отношений множества системы данных и системы порождения.

    статья, добавлен 08.12.2018

  • Изучение функций, заданных на множестве графов и принимающих значения из некоторого множества чисел. Определение числа компонент связности графа. Правила раскраски графа и карт. Проблема четырех красок. Нахождение множеств внутренней устойчивости.

    реферат, добавлен 13.11.2015

  • Понятие зависимости между простыми числами в работах Лежандра и Гаусса. Методы суммирования упорядоченных множеств. Асимптотический анализ данной функции в трудах русского математика П. Чебышева. Ложности функции бесконечного множества по Литлвуду.

    статья, добавлен 21.05.2016

  • Общие правила комбинаторики, определение понятий множества и факториала. Содержание разделов комбинаторики - перечислительного, экстремального и вероятностного. Понятие о размещении, перестановке и сочетании элементов. Решение комбинаторных задач.

    реферат, добавлен 21.12.2016

  • Рассуждения как сущность логического метода решения текстовых задач. Характеристика их способа решения. Примеры текстовых задач, решаемых логическим способом. Возникновение логического способа решения. Суть логического способа решения текстовых задач.

    статья, добавлен 22.04.2019

  • Теория частичных алгебраических действий. Частично упорядоченные множества. Частичные группоиды и их свойства. Примеры полурешеток. Доказательство ассоциативности. Понятие упорядоченного множества и порядкового типа. Алгебраическая теория полугрупп.

    курсовая работа, добавлен 24.03.2012

  • Элементы дискретной математики. Сущность математической логики. Операции над множествами. Правила, формулы дифференцирования. Неопределенный интеграл, методы интегрирования. Основы теории вероятностей и математической статистики. Понятие и предел функции.

    учебное пособие, добавлен 03.07.2013

  • Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.

    реферат, добавлен 19.01.2012

  • Характеристика диаграммы Эйлера-Венна для пересечения двух множеств. Различие между арифметическим сложением и объединением. Методика определения локального коэффициента эмерджентности Хартли. Проблема оценки абсолютной величины системного эффекта.

    статья, добавлен 27.04.2017

  • Условие критичности частного уравнения или неравенства. Поиск множества всех критических точек уравнения. Определение граничных значений параметров в произвольном пространстве на плоскости. Понятие открытого множества. Графическое решение неравенств.

    лекция, добавлен 01.09.2017

  • Характеристика понятия множества, описание операций над множествами. Конечные и бесконечные множества. Счетные и несчетные множества. Анализ рациональных чисел как таких чисел, которые можно записать в виде дроби с целыми числителем и знаменателем.

    реферат, добавлен 22.11.2018

  • История математики в Индии. Счётное устройство инков. Древнеегипетские математические тексты. Вавилонская расчётная техника. Цифры в Древнем Китае, их обозначение специальными иероглифами. Развитие математики в Европе. Древнерусская нумерация чисел.

    реферат, добавлен 13.06.2013

  • Повышение культуры мышления, формирование научного мировоззрения как цель изучения математики. Современное понятие математики. Применение алгебраических структур. Математические модели объектов. Проникновение математики в различные отрасли знаний.

    статья, добавлен 25.07.2018

  • Способы задания множеств и бинарных отношений. Основные логические операции. Представление булевых функций. Понятия логики предикатов. Описание теории графов, конечных автоматов, языков и элементов кодирования. Расчет максимального потока в сетях.

    учебное пособие, добавлен 13.01.2015

  • Теория игр - раздел математики, изучающий конфликтные ситуации на основе их математических моделей. Оптимальная стратегия для каждого игрока. Признаки классификации игры. Решение матричных игр в чистых и смешанных стратегиях. Основная теорема теории игр.

    контрольная работа, добавлен 24.10.2014

  • Множество как основное понятие математики: пересечение, разность, разбиение и произведение. Простые и составные высказывания. Структура и виды теоремы. Сложение и вычитание, умножение и деление в количественной теории целых неотрицательных чисел.

    шпаргалка, добавлен 19.01.2011

  • Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.

    курс лекций, добавлен 01.04.2016

  • Статистическое определение вероятности случайного события и меры статистической закономерности появления события. Применение графической диаграммы Эйлера из теории множеств. Определение свойства относительной частоты и пространства элементарных событий.

    лекция, добавлен 26.09.2017

  • Понятие множества, его виды и характеристическое свойство. Математическое доказательство как цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Теоретико-множественный смысл натурального числа, нуля и операций на множестве.

    шпаргалка, добавлен 18.06.2011

  • Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.

    методичка, добавлен 24.09.2019

  • Аксиомы теории Цернело-Френкеля по устранению. Аксиома выбора как один из важнейших теоретико-множественных принципов, альтернативные формулировки аксиомы и её применение. Принцип вполне упорядочивания и лемма Цорна для частично упорядоченных множеств.

    реферат, добавлен 11.10.2014

  • Развитие логического мышления на уроках математики. Умение формулировать вопросы и умение соотносить понятия. Прием "тонкие" и "толстые" вопросы. Ознакомление с информацией по теме данного урока. Установление взаимосвязи между теорией и практикой.

    статья, добавлен 04.01.2022

  • Способы задания и операции над множествами. Основные тождества алгебры и проекция вектора. Свойства сложения и умножения (коммутативность, ассоциативность и дистрибутивность). Операции над соответствиями. Диагональные элементы матрицы и линейные операции.

    контрольная работа, добавлен 13.05.2014

  • Комбинаторика - наука о расположении элементов в определенном порядке и о подсчете числа способов такого расположения. Классические элементы комбинаторной теории вероятности. Рассмотрение правил суммы и умножения. Перестановка и размещение комбинаций.

    презентация, добавлен 26.07.2015

  • Понятие математики как науки. Понятие античности как отдельной эпохи. Рождение математики в Элладе. Афинское содружество ученых: школа Платона. Математическая вселенная Евклида. Наследники Евклида: Эратосфен и Архимед. Закат греческой математики.

    дипломная работа, добавлен 20.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.