Основы дискретной математики
Направления исследований в дискретной математике, направления их реализации и анализ результатов. Виды теорем и способы их доказательства: цепочка заключения, от противного, метод переборов и математической индукции, комбинированное доказательство.
Подобные документы
Спор о революциях в математике, спровоцированного вопросом о том, можно ли применить к математике концепцию развития науки Куна. Ретроспективный анализ спора, призванный ответить на вопрос о результатах и последствиях для современной философии математики.
статья, добавлен 10.01.2022Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.
реферат, добавлен 12.09.2010Сущность принципа резолюций в логике высказываний. Доказательства невыполнимости, основанные на данном принципе. Правила и примеры использования метода доказательства теорем через поиск противоречий. Стратегии решении задач в алгебре предикатов.
курсовая работа, добавлен 06.02.2014Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.
курс лекций, добавлен 02.02.2012Решение задач по теории вероятности с помощью диаграмм Эйлера-Венна. Геометрическая интерпретация бинарных отношений. Отношение следствий пары высказываний. Анализ истинности суждений построением таблицы, преобразованием формулы, методом "от противного".
контрольная работа, добавлен 27.12.2014Понятие о графе, способы его задания. Достижимость и обратная достижимость вершин графа. Графовые модели для оптимизации транспортных сетей и потоков, решения задач календарного планирования, задач о назначениях и других задач дискретной оптимизации.
курсовая работа, добавлен 21.12.2011Число, как главное понятие в финитной математике. Способы использования математического аппарата для "создания" так называемой "теории методов". Модели биоподобных технологий, которые были разработаны в математике. Описание объектов в реальности.
статья, добавлен 11.03.2019Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.
реферат, добавлен 31.01.2014Криптография как один из наиболее распространённых способов защиты информации. Шифрование данных - технология, в которой используется множество инструментов из теории чисел, абстрактной и линейной алгебры. Алгоритм подбора пароля методом брутфорса.
статья, добавлен 24.02.2019Описание процесса построения графы конечного автомата по общей таблице выходов и переходов. Пример выполнения задания на минимизацию методом карт Карно, арифметические операции в шестнадцатеричной, двоичной, восьмеричной и десятичной системах счисления.
контрольная работа, добавлен 15.11.2015Рассмотрение применения дискретной математики в информатике. Применение теории графов в экономических задачах. Определение жадного алгоритма, решение задачи о максимальной загруженности линий. Описание алгоритма Дейкстра. Решение задачи Коммивояжера.
реферат, добавлен 07.10.2014Краткая биография древнегреческого философа и ученого Пифагора Самосского, его роль в развитии математики. Моральный кодекс пифагорейцев. История создания теоремы Пифагора, различные формулировки и способы доказательства. Задачи на применение теоремы.
реферат, добавлен 18.04.2015Логика как самостоятельная наука. История становления классической математической логики. Виды и направления в развитии неклассической логики. Учение о силлогизме. Становление неформальной логики. Основные разделы современной математической логики.
контрольная работа, добавлен 17.06.2013Определение положения квадратичной функции с помощью разных теорем. Формулирование и доказательство прямой и обратной теорем Виета. Рассмотрение применения данных теорем к задачам с параметрами, сводящихся к исследованию корней квадратного трехчлена.
курсовая работа, добавлен 25.05.2018Сущность Континуум-Гипотезы Кантора как основы мета-математики ("теории доказательства") и математической логики. Конитивная семантическая визуализация проблемы континуума, его трансляционная фрактальность. Когнитивная визуализация монадологии Лейбница.
статья, добавлен 17.01.2018Основные понятия теории вероятностей. Закон распределения дискретной случайной величины. Числовые характеристики дискретных случайных величин. Свойства и вычисления дисперсии. Условное математическое ожидание. Закон больших чисел. Неравенство Чебышева.
курс лекций, добавлен 02.09.2016Непрерывная функция с бесконечным числом максимумов и минимумов и ее непредвиденные свойства. Новые методы решения практических математических задач, доказательство теорем. Движение броуновской частицы, пренебрежение ее инерции и отсутствие касательной.
реферат, добавлен 30.10.2010Научные интересы Д.Д. Мордухай-Болтовского. Исследования в области геометрических построений в пространстве Лобачевского. Работы в области математической биологии. Проблемы методики обучения математике. Исследования по истории методики математики.
лекция, добавлен 30.07.2015Основные направления развития математики в XX веке: топология, риманова геометрия, теория вероятности. Новые области применения математики в связи с развитием компьютерных технологий. Использование сведений о развитии математики в начальной школе.
курсовая работа, добавлен 20.09.2018- 95. Теория графов
Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.
реферат, добавлен 18.03.2010 - 96. Теория графов
Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.
методичка, добавлен 24.03.2015 Теория графов как область дискретной математики с геометрическим подходом к изучению объектов. Решение математических развлекательных задач и головоломок. Эйлеров путь графа. Краткие пути решения. Задача коммивояжера - одна из задач теории комбинаторики.
реферат, добавлен 13.01.2012Понятие статистики. История, пути и направления статистической науки. Ученые, внесшие вклад в развитие статистики. Сущность статистического наблюдения. Виды и способы статистического наблюдения. Форма выражения относительных величин. Графический метод.
реферат, добавлен 18.09.2011- 99. Выпуклые функции
Выпуклый анализ - самостоятельный раздел математики, связанный с классическим анализом и геометрией. Решение экстремальных задач в современной математической экономике. Простейшие и дифференциальные свойства выпуклых множеств. Доказательство теоремы.
методичка, добавлен 08.09.2015 Теоретические основы этноориентированного обучения математики в общеобразовательной школе. Выявление необходимости реализации этноориентированного обучения на уроках математики. Задачи с этнорегиональным содержанием при изучении темы "Целые числа".
контрольная работа, добавлен 12.06.2021