Основы дискретной математики
Направления исследований в дискретной математике, направления их реализации и анализ результатов. Виды теорем и способы их доказательства: цепочка заключения, от противного, метод переборов и математической индукции, комбинированное доказательство.
Подобные документы
Индуктивный и дедуктивный методы рассуждений в основе математического исследования. Понятия полной и неполной индукции. Области применения, метод и принцип математической индукции. Решение примеров, доказательства равенств, неравенств, деления чисел.
реферат, добавлен 30.10.2010Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.
реферат, добавлен 15.12.2011Математическая индукция как способ математического доказательства, роль индуктивных выводов в экспериментальных науках. Интерпретация данных в зависимости от выбранной аксиоматики. Полная и неполная индукция, их применение для доказательства теорем.
реферат, добавлен 02.03.2013Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.
контрольная работа, добавлен 24.11.2012Проблема сложности вычислений как одна из важнейших проблем в дискретной математики. Множества и основные операции над ними. Основные законы операций над множествами. Прямые произведения и функции. Теорема Кантора. Матричный способ задания множеств.
реферат, добавлен 16.05.2012Аналитическое доказательство истинности заключения (теоремы) от противного. Содержательный (словесный) алгоритм по методу Вонга. Содержательный (словесный) алгоритм по методу пропозициональной резолюции. Блок-схемы и сравнительный анализ алгоритмов.
курсовая работа, добавлен 19.06.2012Определение преимуществ векторного метода для доказательства некоторых теорем и решения задач по планиметрии. Доказательства теорем векторным методом. Доказательства основных соотношений, применяемых при решении задач. Разложения неколлинеарных векторов.
презентация, добавлен 10.04.2013Элементы дискретной математики. Сущность математической логики. Операции над множествами. Правила, формулы дифференцирования. Неопределенный интеграл, методы интегрирования. Основы теории вероятностей и математической статистики. Понятие и предел функции.
учебное пособие, добавлен 03.07.2013Подсчет количества единиц в двоичном представлении числа. Обзор вариантов нахождения результата. Постановка проблемы перебора. Изучение асимптотических обозначений и основной теоремы дискретной математики. Исследование эффекта "комбинаторного взрыва".
презентация, добавлен 26.09.2017Эвристика как метод научного познания: особенности применения в математике, понятие доказательства в математике. Эвристические приемы построения математических доказательств. Особенности применения эвристического подхода при доказательстве теорем.
курсовая работа, добавлен 22.11.2010Изучение построения фундамента для математики в XX в. Понятие истинности в математике, абсолютизация человеческих представлений о реальном мире. Формализация математической логики. Эквивалентность интуитивных и формальных доказательств в тезисе Гильберта.
реферат, добавлен 28.10.2018Изучение истории математики как учебного предмета. Формирование умений по построению логических доказательств и математических моделей как общие направления обучению математике в школе. Особенности теоретической и прикладной математики в школьном курсе.
статья, добавлен 05.07.2013Переменные и функции алгебры логики, обзор ее основных теорем о положений. Реализация импульсно-потенциальных логических элементов Троичные коды и система счисления. Логические элементы дискретной автоматики. Принцип двойственности (правило де Моргана).
лекция, добавлен 22.10.2013Понятие эвристики как метода научного познания, особенности ее применения в математике. Понятие доказательства в математике и его особенности, применение для его построения эвристических логических подходов. Эвристический подход при доказательстве теорем.
курсовая работа, добавлен 19.02.2012Обоснование необходимости создания математического аппарата для анализа, обработки и обобщения статистического материала из разных областей. Структуры косвенного доказательства. Схемы доказательства "от противного" на языке математической логики.
статья, добавлен 05.06.2018Модификация модели вычислений, представляющей собой незавершенный метод ветвей и границ. Разработка подхода к формированию метрик на множестве подзадач в различных задачах дискретной оптимизации. Закономерности реализации эвристических алгоритмов.
автореферат, добавлен 02.07.2018Рассмотрение понятия математического доказательства. Проблема обозримости в связи с применением компьютеров в математике. Пример доказательства теоремы о четырех красках. Эпистемология математического доказывания в контексте теоретико-типового подхода.
статья, добавлен 06.04.2021Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.
реферат, добавлен 06.04.2009Анализ аргументации сторонников и противников тезиса "концептуалистов" и "формалистов". Оценка возможностей воспроизведения доказательства математических теорем в виде строгого логического вывода. Программа унивалентных основ математики В. Воеводского.
статья, добавлен 26.05.2022Понятие множества, его виды и характеристическое свойство. Математическое доказательство как цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Теоретико-множественный смысл натурального числа, нуля и операций на множестве.
шпаргалка, добавлен 18.06.2011Метод математической индукции в решении задач на делимость. Применение метода математической индукции к суммированию рядов и доказательству неравенств. Решение геометрических задач на вычисление. Роль индуктивных выводов в экспериментальных науках.
курсовая работа, добавлен 13.10.2017Определение кратчайших путей от вершины до остальных вершин графа, используя алгоритмы Дейкстры и Беллмана. Определение кратчайших путей между всеми парами вершин графа с применением алгоритма Флойда. Программирование алгоритма дискретной математики.
курсовая работа, добавлен 12.11.2017Понятие автоматического доказательства теоремы, противоречивость отрицания формулы. Алгоритм построения вывода методом резолюций. Отличие теоремы резолюций от правил modus ponens и производных правил. Проблема доказательства в логике. Дизъюнкция литер.
презентация, добавлен 17.04.2013Характеристика особенностей метода математической индукции и аксиомы Пеано. Аспекты вычисление сумм и произведений. Методика доказательства тождеств и неравенств с помощью математической индукции. Анализ числа отображений k-множества в m-множество.
учебное пособие, добавлен 25.11.2013История открытия теоремы Пифагора. Способы доказательства теоремы. Древнекитайское и древнеиндийское доказательства. Теорема Евклида и доказательство Хоукинса. Геометрическое доказательство методом Гарфилда. Доказательство теоремы Бхаскари-Ачарна.
реферат, добавлен 08.05.2012