Интерполяция функции в математике
Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
Подобные документы
Характеристическое вычисление кривой. Основной анализ общего интеграла дифференциального уравнения. Главная особенность решения с разделяющимися переменными в математике. Проведение и обоснование задачи Коши. Подбор решения равенств методом Лагранжа.
практическая работа, добавлен 04.12.2014Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.
контрольная работа, добавлен 19.05.2015Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.
контрольная работа, добавлен 24.11.2012Предложены методы полиномиальной, кусочно-линейной интерполяции и интерполяции с ограничителем для полиномов с первой по пятую степень включительно. Написана библиотека, реализующая все перечисленные методы, и проведено ее численное тестирование.
статья, добавлен 16.09.2018Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.
курсовая работа, добавлен 16.06.2021Классификация задач нелинейного программирования и методы их решения. Графический метод решения задач нелинейного программирования для функций двух переменных. Решение задач нелинейного программирования методом Лагранжа и в программной среде Mathcad.
курсовая работа, добавлен 13.10.2016Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.
реферат, добавлен 11.12.2016Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.
курсовая работа, добавлен 04.03.2020Описание метода координат и способов его применения на примере конкретных математических задач. Выделение умений, необходимых для успешного овладения методом координат и подбор задач, формирующих данные умения. Этапы решения задач методом координат.
дипломная работа, добавлен 09.02.2023Освоение решения типовой задачи оптимизации поисковым методом. Анализ и модификация метода решения реальной задачи оптимизации на основе конкретной научной публикации. Процесс исследования и минимизация функции. Блок-схема поискового метода Хука-Дживса.
курсовая работа, добавлен 20.11.2011Постановка задачи аппроксимации и интерполяции функций. Общее понятие обобщенной степени и конечных разностей. Интерполяционные формулы Ньютона. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов для обработки результатов экспериментов.
контрольная работа, добавлен 27.09.2017- 62. Математика
Определение производных первого порядка. Порядок решения системы уравнений методом Крамера. Построение графика функции, используя исследования функции y = x3–2,5x2–2x+1,5. Поиск неопределенных интегралов. Определение координат векторов АВ, ВС, СА.
контрольная работа, добавлен 23.04.2013 Преимущества, характеристика и специфика метода Монте-Карло, его применение в нанотехнологиях и в вычислении интегралов. Способ усреднения подынтегральной функции, оценка погрешности метода Монте-Карло и решение интегральных уравнений второго рода.
курсовая работа, добавлен 02.05.2015Постановка задачи одномерной безусловной оптимизации. Алгоритм пассивного и активного поиска минимума. Методы поиска, основанные на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.
диссертация, добавлен 19.06.2015Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.
курсовая работа, добавлен 16.05.2019Особенности геометрического решения задач линейного программирования и решения симплекс-методом. Рассмотрение метода искусственного базиса. Основные правила выпуклого программирования. Условия Куна-Таккера. Применение метода возможных направлений.
методичка, добавлен 13.09.2015- 67. Численные методы
Понятие метода итерации как способа численного решения математических задач. Его основные цели и порядок применения. Значение интегрированного метода трапеции, процесс оценки абсолютной погрешности. Решение системы линейных уравнений методом Гаусса.
контрольная работа, добавлен 20.05.2013 Основы задач о назначениях в теории. Изучение истории создания венгерского метода решения задач о назначениях. Описание алгоритма решения данным методом за время порядка полинома, не зависящего от величины стоимостей. Реализация задачи о назначениях.
курсовая работа, добавлен 15.05.2014Описание метода нахождения корня (нуля) заданной функции касательных. Исследование особенностей интерполяционного полинома Ньютона. Рассмотрение общих положений численного интегрирования. Характеристика случаев применения метода прямоугольников.
реферат, добавлен 08.08.2015История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.
курсовая работа, добавлен 29.08.2010Использование графических изображений статистических данных. Рассмотрение понятия векторного пространства. Задача линейного программирования и этапы ее решения графическим методом. Пример решения задачи линейного программирования графическим методом.
курсовая работа, добавлен 12.04.2015Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
курсовая работа, добавлен 23.11.2015Задача интерполяции функции, заданной в нескольких точках. Сплайн второго порядка. Приближенные методы вычисления определенного интеграла. Схема расчета показателей разработки нефтяного месторождения в законтурной области пласта при упругом режиме.
методичка, добавлен 06.10.2017История применения графического метода для решения задач. Рассмотрение различных типов задач, методом решения которых может являться график. Основные приемы решения задач с помощью графического метода. Преимущества и недостатки графического метода.
реферат, добавлен 12.07.2020Задачи вычисления неопределенного и определенного интегралов от функций одной переменной. Дифференциальные уравнения первого и высших порядков. Формирование умения использовать методы математики для решения профессиональных задач. Примеры решения задач.
учебное пособие, добавлен 19.11.2015