Интерполяция функции в математике

Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.

Подобные документы

  • Решение задачи, состоящей в определении максимального значения функции. Решение расширенной задачи симплекс-методом. Алгоритм метода искусственного базиса. Особые случаи применения симплекс-метода (Х.А. Таха). Правило выявления неограниченности решения.

    лекция, добавлен 06.09.2017

  • Приближенное решение уравнения методом методом деления пополам, методом Ньютона и методом Симпсона. Особенности нахождения выборочного среднего квадратического отклонения. Сущность выборочного коэффициента корреляции. Этапы проверки нулевой гипотезы.

    контрольная работа, добавлен 06.10.2011

  • Методика построения аппроксимирующей функции, которая наилучшим образом сглаживает экспериментальную зависимость, заданной таблично. Замена громоздкого табличного способа представления данных эксперимента как одна из важнейших задач аппроксимации.

    лабораторная работа, добавлен 05.09.2022

  • Назначение и функции программы для решения транспортной задачи. Решение и процедура построения потенциального (оптимального) плана. Математическая модель, информационная база задачи. Входная и выходная информация. Описание программы, ее применения.

    курсовая работа, добавлен 16.11.2008

  • Особенности определения наличия у обрабатываемых деталей поверхностей сложного профиля. Обзор процесса программирования обработки поверхностей на станках с ЧПУ. Рассмотрение аппроксимации профиля по трем участкам. Оценка применения полиномов Лагранжа.

    статья, добавлен 23.03.2018

  • Представление бета и гамма функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов. Бета и гамма функции. Производная гамма функции. Вычисление интегралов формула Стирлинга, примеры вычислений.

    курсовая работа, добавлен 30.10.2010

  • Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.

    презентация, добавлен 27.05.2014

  • Особливості застосування математичної теорії в програмуванні. Інтерполювання функцій алгебраїчними многочленами. Створення програми, яка демонструє інтерполювання функції в заданих вузлах методом Лагранжа. Загальна задача апроксимації та інтерполяції.

    курсовая работа, добавлен 23.04.2011

  • Нахождение стационарных точек функций двух и трех переменных, вычисление их экстремальных точек и значений. Составление функции Лагранжа. Решение задачи линейного программирования симплекс-методом. Методы определения начального плана транспортной задачи.

    контрольная работа, добавлен 16.10.2017

  • Алгебраический симплекс метод. Проверка плана на оптимальность. Определение ведущих столбца и строки. Построение нового опорного плана. Решение задачи линейного программирования на минимум целевой функции. Применение симплексного метода в экономике.

    курсовая работа, добавлен 19.06.2012

  • Рассмотрение сущности принципа Лагранжа. Описание его применения для решения экстремальных задач без ограничений, конечномерных задач с ограничениями типа равенств, задач с ограничениями типа неравенств и равенств, задач выпуклого программирования.

    лекция, добавлен 06.09.2017

  • Метод множителей Лагранжа позволяет отыскивать максимум или минимум функции при ограничениях-равенствах. Безусловный и условный экстремумы в задаче Лагранжа. Применение неопределенных множителей Лагранжа сводит задачу оптимизации с ограничениями к задаче.

    курсовая работа, добавлен 20.01.2009

  • Задачи визуализации математических функций, имеющих в некоторых точках разрыв первой производной. Принципы выбора интерполяционных методов построения кривых с изломами в заданных точках. Информационно-алгоритмический способ сплайн-интерполяции кривых.

    статья, добавлен 15.12.2021

  • Изучение сущности и особенностей построения интерполирующей функции. Рассмотрение метода полиномиальной интерполяции Шарля Эрмита. Анализ интерполяционных формул для функций двух переменных. Специфика численного дифференцирования и его погрешность.

    реферат, добавлен 19.05.2014

  • Составление обобщенной функции Лагранжа. Необходимые условия экстремума первого порядка. Анализ выполнения достаточных условий экстремума. Нахождение минимума функции методом Нелдера–Мида. Определение вершин многогранника сопряженных направлений.

    контрольная работа, добавлен 13.10.2017

  • Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.

    курсовая работа, добавлен 22.04.2011

  • Характеристика решения первой краевой задачи конечно-разностным и методом прогонки. Их особенности, описание и специфика применения к конкретному случаю. Код программы решения вышеперечисленных методов на языке программирования Borland C++ Builder 6.

    курсовая работа, добавлен 01.12.2009

  • Анализ теоретических основ об интеграле от разрывных функций. Изучение признаков сходимости несобственных интегралов. Метод Л.В. Канторовича выделения особенностей. Изучение особенностей решения интегралов от разрывных функций методом Л.В. Канторовича.

    курсовая работа, добавлен 28.04.2019

  • Численное решение системы дифференциальных уравнений. Решение задач интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом с использованием программы Matlab сведением в графики и таблицы.

    курсовая работа, добавлен 10.03.2020

  • Алгоритм численного метода решения систем обыкновенных дифференциальных уравнений (задачи Коши). Применение метода Эйлера в алгоритме. Перечень основных положений предложенного метода решения систем ОДУ. Программа реализации алгоритма на языке Си.

    статья, добавлен 23.10.2010

  • Методика решения задач линейного программирования графическим методом. В ограничениях задачи замена знаков неравенств на знаки точных равенств и построение соответствующих прямых. Оптимальное решение задачи, определение области допустимых решений.

    статья, добавлен 15.07.2018

  • Постановка и графический метод решения задач линейного программирования с двумя переменными. Построение математических моделей. Особенности симплексного метода решения задач линейного программирования, его основные положения, алгоритм, применение.

    курсовая работа, добавлен 22.04.2011

  • Сущность и применение методики дополнительных построений. Основные принципы стереометрии и планиметрии. Применение метода площадей, метода объемов в математике. Алгебраический метод определения площади треугольника. Особенности расчета объема тетраэдра.

    презентация, добавлен 09.12.2014

  • Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.

    курсовая работа, добавлен 10.06.2021

  • Алгоритм решения задачи о назначениях, предполагающий минимизацию ее целевой функции, поиск оптимального решения. Венгерский метод - один из интереснейших и наиболее распространенных методов решения транспортных задач. Описание алгоритма данного метода.

    курсовая работа, добавлен 14.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.