Управление транспортом с помощью нейросетей
Расчет положения препятствий относительно транспортного средства и желаемой реакции искусственного интеллекта. Аппроксимация функций с областями значений, которые могут иметь несколько измерений - особенность нейронной сети обратного распространения.
Подобные документы
Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
статья, добавлен 29.09.2012Проблема преобразования данных без использования конкретной формулы. Нейронные сети - системы искусственного интеллекта. Способность системы самостоятельно обучаться и действовать на основании предыдущего опыта, с каждым разом делая всё меньше ошибок.
статья, добавлен 15.02.2019Особенности внедрения технологий искусственного интеллекта в процесс управления правоохранительным органом, опасности, которые могут реализоваться при этом. Основные направления целенаправленного внедрения искусственного интеллекта в данной сфере.
статья, добавлен 21.12.2020Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.
курсовая работа, добавлен 04.12.2012Основные направления развития систем искусственного интеллекта. Математическая модель, программное и аппаратное воплощение искусственной нейронной сети. Выявление сложных зависимостей между входными и выходными данными и выполнение их обобщения.
статья, добавлен 25.03.2019История появления и развития искусственного интеллекта. Определение искусственного интеллекта как области компьютерной науки (раздел информатики), занимающейся автоматизацией разумного поведения. Понятие алгоритма и создание нейросетей и кибернетики.
реферат, добавлен 05.01.2014- 7. Генератор псевдослучайных последовательностей на основе модифицированной рекуррентной нейронной сети
Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.
статья, добавлен 19.06.2018 Погружение структурной модели в пространство рецепторных и аксоновых полей - процесс, порождающий топологическую модель нейронной сети, по которой можно реализовать адаптивный алгоритм обработки данных. Сущность регуляризации параметров алгоритма.
статья, добавлен 10.05.2022Применение нечеткой нейронной сети на основе алгоритма Сугено путем аппроксимации управляющего напряжения, как функции координат системы, для реализации терминального управления. Описание базы правил и функции принадлежности, результаты применения сети.
статья, добавлен 21.02.2013Задача определения оптимальной структуры нейросети. Зависимости величин ошибок обучения и обобщения (процент неправильно решенных примеров в соответствующей выборке) и индикаторов внутренних свойств нейросетей от числа нейронов в скрытом слое сети.
статья, добавлен 08.02.2013Разработка алгоритма и программирование вычислительного процесса двухслойной нейросети на языке С#. Исследование параметров обучения нейросети методом обратного распространения ошибки. Анализ количества шагов, скорости обучения и коэффициента сигмоида.
курсовая работа, добавлен 21.02.2016- 12. Обращение операторов в нелинейной теории оболочек с помощью нейронной сети и генетического алгоритма
Применение нейронной сети для идентификации функции нагрузки тонкостенной оболочки по результатам наблюдений. Обоснование возможности аппроксимации зависимости между результатами наблюдений и неизвестными функциями обратных задач с помощью нейронной сети.
статья, добавлен 27.09.2016 - 13. Нейронные сети
Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.
реферат, добавлен 29.12.2011 Пример работы алгоритма обратного распространения ошибки. Функция активации сигмоидного типа. Геометрическая интерпретация алгоритма обратного распространения. Анализ условий и предпосылок для успешного обобщения. Механизм контрольной кросс-проверки.
презентация, добавлен 16.10.2013Исследование разработанного алгоритма решения основных задач искусственного интеллекта, допускающих формализацию в исчислении предикатов, с помощью модификации обратного метода Маслова. Особенности муравьиной тактики применения данного алгоритма.
статья, добавлен 15.01.2019Понятие искусственного интеллекта, который можно определить как научную дисциплину, которая занимается моделированием разумного поведения. Применение искусственного интеллекта в науке, быту и развлекательной сфере. Экспертные системы. Нейронные сети.
реферат, добавлен 04.02.2015История развития систем искусственного интеллекта. Нейрокибернетика и ее задачи. Основные признаки, характерные для искусственного интеллекта. Классификация проблем, решаемых с помощью искусственного интеллекта. Свойства, отличающие знания от данных.
презентация, добавлен 27.04.2024Понятия и базовые положения искусственного интеллекта как самостоятельного научного направления и свойства автоматических систем. Методики и подходы его построения. Проблемы создания и совершенствования искусственного интеллекта, его реализация в мире.
реферат, добавлен 30.03.2015Суть искусственного интеллекта - дисциплины, изучающей возможность создания программ для решения задач, которые требуют определенных интеллектуальных усилий при выполнении их человеком. Математические основы искусственного интеллекта. Теорема о резолюции.
курсовая работа, добавлен 15.07.2012Переходные характеристики переключения. Алгебраический полином Лагранжа. Аппроксимация функций с помощью алгебраических интерполяционных полиномов. Метод наименьших квадратов Форсайта. Зависимость переходного обратного тока от времени после переключения.
курсовая работа, добавлен 13.07.2012Характеристика алгоритма. Сетевые конфигурации. Многослойная сеть, которая может обучаться с помощью процедуры обратного распространения. Этапы выполнения алгоритма. Программа создания однонаправленной сети. Статистика использования других алгоритмов.
статья, добавлен 15.08.2020Особенности использования нейронной сети для стабилизации положения подвижных элементов в среде OpenAI. Знакомство с решением задачи стабилизации положения подвижных элементов в технических системах. Рассмотрение этапов проектирования нейронной сети.
статья, добавлен 19.02.2019Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.
дипломная работа, добавлен 14.12.2019Исторический обзор развития работ в области искусственного интеллекта, изучение характерных особенностей его задач и функций. Принципы построения алгоритмов, заложенных в систему знаний робота. Анализ проблемной области искусственного интеллекта.
реферат, добавлен 12.03.2011Особенности реализации алгоритма обучения, временно прекращающего адаптацию наиболее значимых синапсов при обучении нейросети обратного распространения. Показатели обобщающей способности и большей устойчивости полученных нейросетей к отказам элементов.
статья, добавлен 08.02.2013