Группы и их графы
Понятие, свойства алгебраических операций. Изоморфизм групп, подгруппы. Смежные классы, фактор-группы, гомоморфизм и циклические группы. Определение графов, изоморфизм. Графы специального вида, деревья, циклы и планарность. Группы подстановок и тетраэдра.
Подобные документы
- 51. Построение пространства прямой перспективы на примере рисунка с натуры группы геометрических тел
Линейно-конструктивный рисунок группы геометрических тел. Объемно-пространственные построения в рисунке с натуры. Соединение горизонтального и фронтального видов линии горизонта. Технологическая последовательность объемно-пространственных построений.
статья, добавлен 10.10.2021 Основные понятия и определения теории графов. Представление графов с помощью матриц. Задача о максимальном потоке. Алгоритм решения задачи о максимальном потоке. Графы со многими источниками и стоками. Автоматизация поиска максимальных потоков в сетях.
дипломная работа, добавлен 27.02.2020Теория модулярных форм. Анализ соответствия между элементами конечных групп и модулярными формами, основанный на рассмотрении характеристических многочленов операторов. Проблема нахождения конечных групп на примере элементарных абелевых 2-групп.
статья, добавлен 31.05.2013- 54. Раскраска графов
Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.
доклад, добавлен 29.12.2014 История появления теории графов. Первое знакомство с графами, математическое понятие и определение. Набор функций, определяющий степени вершин. Циклы и пути в графе. Варианты решения различных их разновидностей. Сферы, области использования теории графов.
курсовая работа, добавлен 29.01.2010Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.
курсовая работа, добавлен 04.12.2023- 57. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
курс лекций, добавлен 21.11.2011 Определение графов, их свойства и типы. Использование диаграмм для представления графов. Элементарные свойства остовных деревьев в связных графах. Топологическая теория графов. Введение в теорию матроидов, доказательство теорем о связности и укладках.
учебное пособие, добавлен 15.10.2016Разделы теории групп: конечные, абелевы, разрешимые и др. Теорема о единственности разложения в сумму примарных абелевых групп по разным простым числам. Накрывающее свойство свободной абелевой группы конечного ранга и доказательство структурной теоремы.
курсовая работа, добавлен 15.01.2015Подходы, описывающие получение формализованных уравнений избыточных измерений крутизны преобразования без усреднения. Коэффициенты при выходных величинах. Решение задачи пространственно-временного усреднения в структуре комбинаторных уравнений величин.
статья, добавлен 28.09.2016Классификация непериодических неабелевых локально разрешимых групп. Описание всех непериодических групп, в которых нетривиально пересечение всех неинвариантных подгрупп. Неабелевы, бесконечная циклическая группы. Инвариантная периодическая подгруппа.
статья, добавлен 26.04.2019Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.
презентация, добавлен 26.07.2015Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.
контрольная работа, добавлен 07.11.2013Графы и их использование для описания сложно структурированной информации. Задача нахождения минимального остовного дерева взвешенного неориентированного графа как одна из самых известных алгоритмических проблем комбинаторной оптимизации в математике.
дипломная работа, добавлен 04.12.2019Построение математической модели управления и автоматизации технологических процессов в промышленности. Характеристика, структурная схема и свойства орграфов, использование формулы Мейсона для их преобразования. Определение передаточной функции контуров.
лекция, добавлен 22.07.2015Изучение основополагающих понятий теории графов: ориентированный граф и маршрут, орцепь, орцикл и сильная связность. Рассмотрение понятия эйлерова орграфа и доказание основной теоремы о таких графах. Анализ приложения орграфов к теории цепей Маркова.
контрольная работа, добавлен 29.01.2014Ориентированные графы как структуры с конечным множеством вершин и ребер. Симметричное отношение смежности для неориентированного графа. Матрица смежности. Проверка присутствия ребра при помощи матрицы смежности. Отношение эквивалентности на вершинах.
контрольная работа, добавлен 25.10.2013Постановка, стандартные формы записи задачи линейного программирования, способы их решения. Основные понятия и определения теории графов, сетевая модель как графическая модель комплекса работ. Математическая формализация и алгоритмизация игровых задач.
курсовая работа, добавлен 11.06.2013Криптология как наука, занимающаяся методами шифрования и дешифрования. Выделение мультипликативной группы кольца вычетов. Группа в математике и ее множественные элементы с определённой на нём ассоциативной бинарной операцией. Свойства колец и полей.
курс лекций, добавлен 11.12.2014Рассмотрение проблемы существования нетривиальных стабильных элементов в свободных нильпотентных группах. Описание особенностей определения нетривиального стабильного элемента, в разложении которого участвуют 22 базисных коммутатора одного вида.
статья, добавлен 12.05.2018Ориентированные, неориентированные и смешанные графы. Понятие деревьев и их основные свойства, связность вершин, ацикличность. Определения путей в графе. Решение задачи по определению числа путей заданной длины, составление компьютерной программы.
курсовая работа, добавлен 18.12.2014Биография и научная деятельность М.А. Наймарка. Теория самосопряженных расширений симметрических операторов. Нормированные кольца и представление об алгебрах. Линейные дифференциальные операторы. Теория групп, группы Ли и теоремы Гельфанда-Наймарка.
реферат, добавлен 03.06.2015Понятие многогранников в геометрии. Основное определение понятия пирамиды. Определение вершины, ребер, боковых граней пирамиды, ее основания и правила их нахождения. Основные свойства правильной пирамиды, апофемы, усеченной пирамиды и тетраэдра.
презентация, добавлен 26.04.2011Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.
задача, добавлен 20.01.2014Дерево как связный граф, не содержащий циклов. Перечень основных свойств деревьев. Общее понятие про орграф. Содержание теоремы А. Кэлли. Сущность понятия "подграф". Пример алгоритма построения каркаса в связном графе, особенности его обоснования.
реферат, добавлен 18.04.2012