Группы и их графы

Понятие, свойства алгебраических операций. Изоморфизм групп, подгруппы. Смежные классы, фактор-группы, гомоморфизм и циклические группы. Определение графов, изоморфизм. Графы специального вида, деревья, циклы и планарность. Группы подстановок и тетраэдра.

Подобные документы

  • Изучение особенностей сечения тетраэдра заданной плоскостью. Характеристика главных аспектов и теорем стереометрии. Рассмотрение основных свойств аксиом планиметрии и прямой лежащей в плоскости. Методика построение сечения тетраэдра через три точки.

    презентация, добавлен 18.12.2013

  • Основное правило комбинаторики. Теория булевых функций, булева алгебра характеристических векторов и высказываний. Определение и способ задания булевых функций. Дизъюнктивные и конъюнктивные нормальные формы. Эйлеровы графы, сети, пути в орграфах.

    курс лекций, добавлен 18.03.2010

  • Понятие и структура матриц, их классификация и типы, подходы к анализу. Типы и свойства операций, производимых над матрицами: сложение, умножение. Понятие определителя матрицы, а также правила его вычисления. Системы линейных алгебраических уравнений.

    лекция, добавлен 12.11.2017

  • Понятия графа в математической теории как совокупности непустого множества вершин и множества пар вершин. Направленность графов, ограничения на количество связей и дополнительные данные о вершинах или ребрах. Способы задания графов, матрица смежности.

    контрольная работа, добавлен 29.08.2010

  • Умение решать задачи - показатель уровня математического развития. Поиск эффективных способов решения задач, доступных для понимания и применения школьниками. Общий алгоритм решения задач. Определение графа, виды задач, которые можно решать с их помощью.

    презентация, добавлен 15.10.2016

  • Формулировка и сущность теоремы Паскаля. Теорема о циклических шестиугольниках и её доказательство, точки четвёртого порядка. Понятие оператора цикла. Обоснование использования аппарата алгебраических подстановок. Аналитическое исследование множества.

    научная работа, добавлен 04.05.2012

  • Сущность понятия "величина" в математике. Особенности восприятия величины предметов детьми младшего дошкольного возраста. Определение уровня сформированности представлений о величине предметов у детей второй младшей группы дошкольного учреждения.

    курсовая работа, добавлен 03.04.2014

  • Доказательство изооморфности векторных пространств. Отображение для всевозможных наборов чисел. Линейные, нулевые и тождественные преобразования. Однозначное соответствие между матрицами и всеми линейными преобразованиями векторного пространства.

    лекция, добавлен 30.04.2014

  • Изучение базовых понятий и определений; ознакомление с задачами, возникающими в теории графов и методами их решения. Освоение компьютерных способов представления графов и алгоритмов машинной обработки графов. Программные продукты для анализа графов.

    контрольная работа, добавлен 13.04.2012

  • Изучение процедуры построения предфрактального графа. Рассмотрение этапов процесса выполнения операции замещения вершины затравкой. Особенности процесса порождения предфрактального графа. Понятие мультиграфа и рассмотрение способов обозначения его ребер.

    статья, добавлен 19.01.2018

  • Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.

    курсовая работа, добавлен 13.09.2012

  • Предположение группы событий, объединение которых образует пространство элементарных исходов. Использование диаграммы Венна для теоремы сложения вероятностей и умножения. Применение формулы Байеса для условного исчисления априорной реализации гипотезы.

    реферат, добавлен 26.06.2013

  • Основы классической теории сводимости задач и геометрического подхода к изучению их сложности. Понятие конусного и многогранного разбиения, афинной сводимости задач комбинаторной оптимизации. Примеры труднорешаемых и полиномиально разрешимых задач.

    диссертация, добавлен 10.01.2012

  • Состояния равновесия, расположенные на кривой второго порядка, являющейся эллипсом или гиперболой. Изоклина бесконечности или нуля системы. Определение индекса Пуанкаре. Точка возврата кривой. Мнимые и действительные корни характеристического уравнения.

    лекция, добавлен 29.07.2013

  • Использование теории графов для представления отношений между элементами сложных структур различной природы. Определение связности темпорального графа. Применение метода Мальгранжа для нахождения максимальных компонент сильной связности четких графов.

    статья, добавлен 19.01.2018

  • Основные виды графических изображений, используемые при анализе результатов исследования. Применение картограмм в практической деятельности врача. Отображение динамики явлений на линейных и столбиковых диаграммах. Группы ошибок статистического анализа.

    лекция, добавлен 07.05.2014

  • Понятие системы линейных алгебраических уравнений с неизвестными. Основная и расширенная матрица системы. Определение совместной и несовместной системы линейных уравнений. Пример решения системы. Вычисление алгебраических дополнений. Формулы Крамера.

    лекция, добавлен 26.01.2014

  • Примеры решения логических, дедуктивных заданий: на нахождение истинного ответа, складывание и разрезание, восстановление исходного равенства, ребусы, соответствия и графы, комбинаторика, противоречия. Анализ и алгоритм нахождения правильных ответов.

    реферат, добавлен 03.06.2014

  • Основные действия над матрицами. Решение произвольных систем уравнений Крамера и Гаусса. Коллинеарные и компланарные векторы. Кривые второго порядка. Аналитическая геометрия в пространстве. Поверхности вращения. Бесконечно малые функции. Графы и сети.

    курс лекций, добавлен 05.03.2016

  • "Единая теория поля" — первая подлинно геометризованная концепция, толкующая электромагнитное поле как геометрический феномен. Четыре группы аксиом Вейля и доказательства их справедливости с построением математических моделей систем.

    реферат, добавлен 26.03.2014

  • Основные понятия и определение графа. Степень вершины графа. Особенности и свойства подграфа, пути, цепи и цикла. Характеристика связных графов. Анализ теоремы об оценке числа рёбер несвязного графа. Сущность понятий "дерево графа" и "лес графа".

    методичка, добавлен 15.10.2016

  • Бесперспективность проверки существования нераскрашиваемого графа путем полного перебора. Задача построения однодневного расписания учебных занятий. Проверка существования гармонической раскраски у каждого графа. Применение рекурсивной процедуры AddSplit.

    статья, добавлен 21.06.2018

  • Проведение исследования тринома четвертой и пятой степени. Нахождение частного решения диофантова уравнения. Особенность записи многочлена в параметрической форме. Установление резольвенты для полинома. Построение трехчленного выражения группы Галуа.

    статья, добавлен 28.04.2017

  • Разработка метода построения некоторых геометрических образов в гиперкомплексном квадриплексном пространстве. Формулирование геометрической интерпретации квадриплексного пространства с помощью изоморфизма квадриплексных и бикомплексных пространств.

    статья, добавлен 29.01.2019

  • Рассмотрение многомерных обобщений теоремы Абеля. Построение тройки тетраэдров по их двойственным графам. Вычисление смешанного объема суммы с помощью программы Wolfram. Доказательство неразрешимости группы монодромии системы и наличия транспозиции.

    контрольная работа, добавлен 26.07.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.