Использование методов машинного обучения для прогнозирования потоков пациентов в медицинских учреждениях
Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
Подобные документы
Возможность применения машинного обучения при классификации спама. Структура файла "spam". Программный код использования библиотеки pandas, перевода категориальных признаков в числовые. Код тестирования различного количества нейронов, его анализ.
статья, добавлен 17.02.2019Виды чат-бот приложений с использованием алгоритмов машинного обучения. Характеристика методов оценки, для измерения бизнес-показателей и технических показателей. Снижение загрузки колл-центра. Оценка качества классификации сообщений, интерфейс оператора.
статья, добавлен 29.12.2020Роль искусственного интеллекта в геоинформационных системах и его влияния на геоинформационную науку. Использование нейронных сетей и машинного обучения в геоинформационных системах. Применение программных средств для решения геоинформационных задач.
статья, добавлен 28.09.2024Исследование задачи машинного обучения. Распознавание на изображении образа кошки. Пример распознавания лиц на Facebook. Пример простейшей схемы нейросети. Пример отображения некоторых архитектур нейросетей. Анализ программ-поисковиков в Интернете.
статья, добавлен 13.03.2019Переваги систем машинного перекладу, методи його автоматичної оцінки. Розробка інтелектуальної системи автоматичної оцінки якості машинного перекладу з використанням метрики BLEU. Проблема кореляції автоматичної та експертної оцінки машинного перекладу.
дипломная работа, добавлен 17.01.2013Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.
статья, добавлен 01.03.2019Характеристика понятия образа, проблемы обучения распознаванию образов. Описание истории исследований в области нейронных сетей. Изучение сигнального метода обучения Хебба. Описание структурных схем и алгоритмов нейронных сетей Хопфилда и Хэмминга.
реферат, добавлен 12.06.2015Описание анализа систем распознавания эмоций с применением методов машинного обучения, находящихся в открытом доступе, в рамках курсового проекта по дисциплине Обучающие Технические Системы "Machine Learning". Neurobotics EmoDetect. Cognitive Emotion.
статья, добавлен 14.03.2019- 34. Разработка методов и алгоритмов оценки надежности сетей телекоммуникации на основе нейронных сетей
Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.
диссертация, добавлен 24.05.2018 Определение распознавания объектов как метода компьютерного зрения для идентификации объектов на изображениях или видео. Рассмотрение алгоритма обнаружения объекта методом машинного обучения и методом глубокого обучения с помощью средств Matlab.
статья, добавлен 24.10.2020Описана информационная технология машинного обучения для выявления обфусцированных текстов, которыми обмениваются участники виртуальных социальных сетей при ведении ими противоправной деятельности. Эффективность использования рассматриваемой технологии.
статья, добавлен 01.02.2019Процесс обучения нейросети-классификатора, сравнения эффективности теоретических методов оптимизации со стохастическими. Подтверждение преимуществ и потенциальных возможностей. Основные свойства задач (баз данных) и размеры нейронных сетей для них.
статья, добавлен 08.02.2013Рассмотрение методов прогнозирования нейронных сетей. Решение задачи обзора методов оконного прогнозирования на объеме страховых взносов. Изучение методов одношагового, многошагового прогнозирования. Применение метода окон для генерации обучающей выборки.
статья, добавлен 24.03.2018Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.
дипломная работа, добавлен 26.05.2018Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.
дипломная работа, добавлен 10.12.2019Обучение с учителем и формальная запись задачи классификации. Каскадный классификатор, выбор предметной области и обзор реализаций методов машинного обучения. Мобильные платформы и изучение инструментов разработки. Обучение каскадного классификатора.
дипломная работа, добавлен 11.07.2016Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 23.02.2015Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Построение модели машинного обучения для обработки входящих запросов в службу технической поддержки. Решение задачи классификации запросов в службу технической поддержки при помощи оригинального алгоритма, учитывающего специфику предметной области.
статья, добавлен 25.04.2022Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.
статья, добавлен 12.07.2021Методы формирования структуры нейронных сетей и их обучения. Принципы автоматического определения способа и параметров формирования общего решения в коллективе. Использование полученных результатов для решения задач моделирования и прогнозирования.
статья, добавлен 19.01.2018Применение методов машинного обучения с целью моделирования состояния рынка недвижимости Москвы. Изучение теории распознавания образов и теории вычислительного обучения в искусственном интеллекте. Проектирование и программирование явных алгоритмов.
диссертация, добавлен 02.09.2018Предсказание трехмерной структуры белка. Предсказание матрицы контактов белка с помощью информации об ограничениях, содержащейся в матрице контактов. Применение моделей машинного обучения XGBoost, CatBoost, Logistic Regression, CNN, ResNet, BiLSTM, LSTM.
дипломная работа, добавлен 25.08.2020Знакомство с основными проблемами автоматизированного формирования сценариев, описывающих поведение вредоносных программ. Рассмотрение особенностей и способов применения методов машинного обучения для формирования сценариев поведения вредоносных программ.
статья, добавлен 28.08.2016