Использование методов машинного обучения для прогнозирования потоков пациентов в медицинских учреждениях
Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
Подобные документы
Формализация знаний экспертов и их перенос в компьютер в виде базы данных. Использование математического анализа и теории графов при создании алгоритмов интеллектуальных противников. Применение машинного обучения и искусственного интеллекта в играх.
творческая работа, добавлен 02.05.2024Создание модели автоматизированного биржевого агента, способной зарабатывать на совершении сделок по покупке и продаже финансовых инструментов на бирже. Генетические алгоритмы обучения для построения простых деревьев решений и объединения их в ансамбли.
дипломная работа, добавлен 26.08.2016Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016Возможности современных информационных технологий и Интернета. Разработка клиент-серверной архитектуры построения больших искусственных нейронных сетей. Идентификация, аутентификация пользователей и защита информации в системе дистанционного обучения.
статья, добавлен 27.05.2018Рассмотрение и характеристика вопросов разработки технологий автоматизированного обучения на основе человеко-машинного, с целью повышения качества образовательных услуг. Ознакомление с моделью линейного и разветвленного программированного обучения.
статья, добавлен 26.07.2018Разработка интеллектуальных систем, основанных на знаниях нейросетевых и нейрокомпьютерных технологий. Использование нейронных сетей при решении предоставления кредита в современном банке. Создание экспертных систем и организация ассоциативной памяти.
контрольная работа, добавлен 29.11.2015Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.
статья, добавлен 26.04.2017Примеры задач компьютерного зрения. Методы машинного обучения. Модели нейронных сетей для задачи мульти-классификации и детектирования. Порядок создания системы детектирования и сегментирования предметов одежды на фото. Нейронные сети, модель SSD300.
статья, добавлен 18.07.2020Рассмотрение существующих методов и методик управления информационным процессом обучения. Исследование и анализ возможностей и средств внедрения адаптации в процесс обучения в автоматизированной обучающей системе для повышения эффективности работы с ней.
статья, добавлен 16.07.2018Алгоритмизация адаптивного искусственного интеллекта в мультиагентных играх. Моделирование конкурентной среды интеллектуальных агентов. Исследование эффективности алгоритмов в колониях DT, ABC и в нейронной сети, обучаемой генетическим алгоритмом.
дипломная работа, добавлен 01.09.2016Классификация алгоритмов кластеризации. Создание самоорганизующихся нейронных сетей, являющихся слоем или картой Кохонена, в MATLAB NNT. Создание сети, правило настройки смещений, реализация циклов обучения. Моделирование кластеризации данных.
курсовая работа, добавлен 22.06.2011Методы, которые используются для предотвращения мошенничества и, в частности, для работы с несбалансированными данными. Суть затрат на уровне класса и объекта. AdaBoost и его чувствительные к стоимости вариации. Изучение метода изотонической регрессии.
дипломная работа, добавлен 16.09.2020Применение нейронных сетей в банковской сфере с использованием Keras и Python. Улучшение процессов принятия решений в классификации и прогнозировании рисков. Методы, используемые для обучения и тестирования моделей, результатов их анализа и интерпретации.
статья, добавлен 15.10.2024Оценка читабельности текста и факторы, оказывающие влияние. Сущность и методы машинного обучения. Метрики оценки качества классификаторов. Загрузка, извлечение атрибутов из текста. Индекс туманности Ганнинга. Статистический анализ языковых факторов.
дипломная работа, добавлен 15.09.2018Определение видов нейронных сигналов, методики обучения и тестирования в зависимости от типа используемой автономной навигационной системы. Рассмотрение случаев, когда счисление ведётся на основе данных от лага, гирокомпаса или инерциальной системы.
статья, добавлен 28.10.2018Розмежовується автоматизований та машинний види перекладу. Наводяться існуючі класифікації систем машинного перекладу. Аналізуються системи машинного перекладу. Пропонується коротка характеристика кожного типу машинного перекладу, їх особливості.
статья, добавлен 11.05.2018Использование интеллектуальных игровых технологий в процессе обучения программированию и формирования навыков алгоритмического мышления. Определение особенностей применения игр в обучении, описание механизмов их адаптации под способности обучающихся.
статья, добавлен 23.11.2020Изучение особенностей, преимуществ и недостатков использования алгоритмов машинного обучения в нефтегазовом комплексе. Обзор компаний сферы информационных технологии, специализирующихся в направлении нефтегазового комплекса и искусственного интеллекта.
статья, добавлен 08.12.2024Общее описание нейронных сетей, их виды: однослойные и многослойные сети, персептрон, сети Хопфилда. Описание программных моделей и алгоритмов их обучения. Релаксация стимула, возникновение ложного образа и выработка прототипа, бистабильность восприятия.
контрольная работа, добавлен 12.05.2015Создание алгоритма и программы для распознавания лица по фотографии c использованием библиотеки OpenCV методом искусственных нейронных сетей. Алгоритм бустинга для поиска лиц. Вычисление признаков и сравнение их совокупностей между собой разными методами.
курсовая работа, добавлен 05.03.2019Структурные алгоритмы построения статических и динамических нейронных сетей. Многослойный персептрон с временными задержками и связанные с ним нейросетевые архитектуры. Динамическая кластеризация и сети Кохонена. Обзор итерационных методов обучения сетей.
книга, добавлен 07.03.2014Методика статистического моделирования данных для обучения нейронных сетей с целью прогнозирования прочностных свойств волокнисто-пористых биокомпозитов. Количество данных, необходимое для обучения и тестирования сети. Эмпирическая линейная регрессия.
статья, добавлен 27.04.2017Преимущества применения нейронных сетей для распознавания объектов. Разработка алгоритма обработки образа с помощью нечеткой логики в системе технического зрения. Бинаризация и кодирование изображения при его преобразовании из цветного в оттенки серого.
курсовая работа, добавлен 29.03.2021Разработка модели обнаружения злоумышленника в информационной системе. Анализ результатов обучения и реализации нейронных сетей на основе персептрона и линейных нейронных сетей в пакете Matlab. Выявление аномального поведения пользователя в системе.
статья, добавлен 30.04.2018- 100. Исследование алгоритмов обучения нейро-нечеткой системы управления биотехнологическим процессом
Сравнительный анализ алгоритмов обучения нейро-нечеткой системы с функциями принадлежности с применением метода обратного распространения ошибки и гибридного метода. Решение задачи управления биотехнологическими процессами микробиологических производств.
статья, добавлен 26.05.2017