Исчисление бесконечно малых Г.В. Лейбница в современном изложении, или введение в нестандартный анализ А. Робинсона

Способ обоснования существования актуальных бесконечно малых чисел, основанный на понятии двузначной меры. Аксиоматический подход к понятию расширенной числовой прямой. Арифметика бесконечно малых чисел. Основные теоремы дифференциального исчисления.

Подобные документы

  • Характеристика специфических особенностей при определении значений комплексных чисел, которые имеют натуральные целые значения. Анализ основных методик получения истинного результата при умножении чисел с положительными или отрицательными знаками.

    статья, добавлен 03.03.2018

  • Система счисления как способ наименования и обозначения чисел. Позиционные (десятичная, двоичная, восьмеричная, шестнадцатеричная) и непозиционная (римская) системы счисления. Порядок перевода чисел из одних систем счисления в другие, основание системы.

    практическая работа, добавлен 17.12.2015

  • Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.

    курс лекций, добавлен 22.01.2013

  • Характеристика совершенных чисел как натуральных чисел, равных сумме всех своих собственных делителей (то есть всех положительных делителей, отличных от самих чисел). Изучение основных свойств и операций с совершенными числами, анализ их истории.

    презентация, добавлен 20.10.2016

  • Значення простих чисел у математиці. Вивчення властивостей простих чисел Мерсенна та їх застосування на практиці. Опис стандартних процедур, функцій та інтерфейсу програми. Обчислення алгоритму побудови простих чисел Мерсенна на заданому проміжку.

    курсовая работа, добавлен 12.05.2016

  • Роль простых чисел в криптографии. Арифметические прогрессии. Комбинации арифметических прогрессий. Система формул арифметических прогрессий. Матрицы чисел. Разности и суммы прогрессий. Члены прогрессий. Таблицы. Бесконечное множество комбинаций.

    доклад, добавлен 25.10.2008

  • Методы получения функционального уравнения для доказательства великой теоремы Ферма. Исследование матрицы распределения составных чисел в ряду натуральных числовых значений. Составление системы уравнений для нахождения показателей пифагоровых троек.

    учебное пособие, добавлен 30.03.2017

  • Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.

    доклад, добавлен 02.11.2014

  • Преобразование, одно из основных понятий математики, возникающее чаще всего при изучении соответствий между классами геометрических объектов и классами функций. Стереографическая проекция, свойства оси в зависимости от характера расположения окружностей.

    контрольная работа, добавлен 15.06.2011

  • Основные этапы зарождения и развития чисел в человеческом обществе, оценка их роли и значения. Особенности численной системы племени майя, Древнего Египта, арабских и славянских народов. Число судьбы человека, его определение. Значение чисел по Пифагору.

    презентация, добавлен 21.01.2013

  • Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.

    контрольная работа, добавлен 18.12.2013

  • Общая характеристика простых и составных чисел; необходимость ознакомления учеников с таблицей простых чисел. Ключевые этапы урока. Ключевые отличия составных и простых чисел. Основные вопросы, помогающие ученикам скорее закрепить изученный материал.

    контрольная работа, добавлен 17.04.2012

  • Формулировка теоремы, утверждающей, что тройки простых чисел составляют бесконечное множество. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов. Функция натурального аргумента, оценка погрешностей.

    статья, добавлен 26.01.2019

  • Решение уравнений с модулем методом последовательного раскрытия модуля; метод интервалов (разбиения числовой прямой на промежутки), при помощи зависимостей между числами, их модулями и квадратами чисел. Использование геометрической интерпретации модуля.

    контрольная работа, добавлен 19.01.2012

  • Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.

    статья, добавлен 26.04.2019

  • Биография Леонардо Пизано Фибоначчи. Возникновение "задачи о размножении кроликов" - числовой последовательности названной впоследствии "рядом Фибоначчи". Анализ золотосечённой логарифмической последовательности. Применение чисел Фибоначчи в наше время.

    доклад, добавлен 25.02.2014

  • Обзор видов множества. Характеристика геометрического содержания предела числовой последовательности. Арифметические действия над основными свойствами сходящихся математических постоянств имеющих предел. Обоснование условий сходимости числового ряда.

    лекция, добавлен 29.09.2013

  • Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.

    презентация, добавлен 26.09.2017

  • Минуле і теперішнє комплексних чисел які знайшли чисельні застосування: в картографії, електротехніці, гідродинаміці, теоретичній фізиці. Спосіб Гамільтона введення комплексних чисел. Закони для комплексних чисел. Виконання ділення комплексних чисел.

    реферат, добавлен 10.01.2009

  • Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.

    лекция, добавлен 22.12.2013

  • Исследование процесса применения персональных компьютеров к проблеме распределения простых чисел. Анализ метода снижения нормы отклонений наиболее популярных функций распределения простых чисел от реальных значений. Рассмотрение испытанных аппроксимаций.

    статья, добавлен 26.04.2019

  • Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.

    реферат, добавлен 29.10.2013

  • Зміст дії ділення та правил множення раціональних чисел. Формулювання основних правил ділення раціональних чисел. Способи вироблення у учнів вмінь застосовувати ці правила для розв'язування вправ, що передбачають виконання ділення раціональних чисел.

    конспект урока, добавлен 17.09.2018

  • Деление чисел с использованием теоремы о делении с остатком. Представление геометрической интерпретации комплексных чисел, определение их модулей. Применение диафантова анализа. Вычисление матриц и пределов. Нахождение производных заданных функций.

    контрольная работа, добавлен 21.01.2015

  • Выведение формул, аппроксимирующих функцию распределения простых чисел pi(x). Функция s(x), которая хорошо аппроксимирует функцию pi(x) на всем ряде натуральных чисел. Анализ таблицы значений для x, не превосходящих 1022 для разности s(x) - pi(x).

    статья, добавлен 22.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.