Производные функций
Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
Подобные документы
Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.
презентация, добавлен 13.02.2016Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.
курсовая работа, добавлен 29.05.2015Геометрический смысл интегральной суммы. Свойства верхних и нижних сумм. Лемма Дарбу. Необходимое и достаточное условие интегрируемости. Сущность равномерно непрерывных функций. Объемы тел вращения. Правила интегрирования. Формула прямоугольников.
реферат, добавлен 17.01.2011Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.
контрольная работа, добавлен 23.01.2015Приведены формулы, устанавливающие связь между цугами и составными событиями бинарной последовательности. Доказана теорема: "Формула для цуг из составных событий", что переводит комбинаторику длинных последовательностей на физико-математический уровень.
статья, добавлен 11.07.2018Характеристика периодических функций Левитана, анализ их основных свойств и квазиравномерная сходимость. Непрерывность функции с пределом, равным нулю на бесконечности. Понятие асимптотически почти автоморфной и периодической функций, их разница.
статья, добавлен 22.03.2016- 57. Описание конечных групп с плотной системой F-субнормальных подгрупп для формации дисперсивных групп
Строение групп по заданным свойствам системы их подгрупп как направления в теории конечных групп. Понятие субнормальности в теории формаций. Доказательство теорем Машке и Бернсайда. Анализ конечных групп с плотной системой F-субнормальных подгрупп.
курсовая работа, добавлен 07.03.2010 Примеры конечных и бесконечных множеств с помощью перечисления или описания. Прямые произведения множеств, сочетаний, размещений, перестановок. Способы представления бинарных отношений. Анализ рефлексивных, симметричных, транзитивных бинарных отношений.
шпаргалка, добавлен 27.10.2013Теория вероятности и математическая статистика. Основные категории: событие, вероятность, случайность. Теоремы сложения и умножения. Вероятность гипотез, формула Байеса. Независимые события. Биномиальное распределение. Редкие события, формула Пуассона.
методичка, добавлен 21.10.2010Выражение для полного дифференциала. Необходимое условие первого порядка для существования локального максимума. Максимизация функции двух переменных при одном ограничении. Полный дифференциал функции. Интерпретация множителей Лагранжа. Матрица Якоби.
презентация, добавлен 21.08.2015Изучение понятия элементарных функций в математике, их виды. Характеристика правил определения элементарных функций по Лиувиллю. Дифференцирование и нахождение производных по таблице. Дифференцируемая в точке функция, матрица Якоби и теорема Лебега.
реферат, добавлен 26.02.2015Характеристика методики аналитического нахождения минимального значения функции через необходимое и достаточное условие экстремума. Реализация алгоритма поиска минимального значения функции методом градиентного спуска на языке программирования С++.
курсовая работа, добавлен 28.10.2017Постановка задачи аппроксимации и интерполяции функций. Общее понятие обобщенной степени и конечных разностей. Интерполяционные формулы Ньютона. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов для обработки результатов экспериментов.
контрольная работа, добавлен 27.09.2017Первый замечательный предел: его основная формула, характеристика доказательства и следствий из него. Второй замечательный предел: формула второго замечательного предела, его доказательство и следствие. Примеры решения задач с использованием пределов.
реферат, добавлен 28.05.2015Описание функций одной и многих переменных, исследование задач на максимум и минимум - локальных свойств функции. Использование высших производных. Необходимые условия и достаточные дифференциальные признаки экстремума. Понятие условного экстремума.
курсовая работа, добавлен 08.09.2010Математические модели объектов управления в обычных и частных производных. Динамические звенья и структурные схемы систем управления. Понятие матрицы передаточной функции. Сущность первой теоремы Ляпунова и определение устойчивости линейных систем.
учебное пособие, добавлен 28.12.2013- 67. Формула Тейлора
Дослідження особливостей формули Тейлора із залишковим членом у формі Лагранжа. Аналіз тейлорової формули для многочлена. Розгляд розвитку основних елементарних функцій в ряд Маклорена. Вивчення процесу застосування почленного диференціювання рядів.
курсовая работа, добавлен 14.12.2015 Криволинейные интегралы первого рода, их свойства и вычисление. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Связь поверхностных интегралов первого и второго рода. Формула Гаусса-Остроградского и формула Стокса.
контрольная работа, добавлен 20.12.2011Схема Бернулли, её определение и задачи, которые решаются по ней. Важное условие, без которого схема Бернулли теряет смысл. Возможные исходы при независимых испытаниях одинаковых вероятностей. Теорема и формула Бернулли, определение вероятностей событий.
контрольная работа, добавлен 04.01.2015Основные понятия теории вероятности. Понятие события и его основные виды. Вероятность событий: классическое и статистическое. Элементы комбинаторики. Теорема сложения вероятностей. Формула полной вероятности и формула Байеса. Схема испытаний Бернулли.
курсовая работа, добавлен 07.06.2014Задача о числе счастливых билетов и формула Бинома Ньютона. Определение производящей функции. Восстановление элементов последовательностей по известным производящим функциям. Числа и многочлены Фибоначчи и Люка. Последовательность с двумя индексами.
курсовая работа, добавлен 13.05.2014Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.
учебное пособие, добавлен 11.10.2014Построение графиков функции спроса и предложения, вычисление производных и приближенного значения числа через дифференциал функции. Определение экстремума, выгнутостей и вогнутостей функции. Вычисление интегралов и неоднородных линейных уравнений.
контрольная работа, добавлен 16.04.2010- 74. Теория множеств
Рассмотрение обозначений, принятых в теории множеств. Характеристические функции множеств, свойства операций над множествами. Применение понятия мощности множества для количественной характеристики множеств. Верхняя и нижняя грани числового множества.
курсовая работа, добавлен 07.05.2015 Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.
контрольная работа, добавлен 25.12.2011