Производные функций
Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
Подобные документы
Сущность и основные теоремы дифференциального исчисления, их главные отличия. Процесс построения графика. Описание теоремы Вейерштрасса и Лагранжа, их использование. Обобщенная формула конечных приращений. Раскрытие неопределенностей и правила Лопиталя.
лекция, добавлен 29.09.2013Определение наибольшего и наименьшего значений функции на заданном интервале. Построение касательной графика, параллельной к координатной оси. Формула Коши или обобщенная формула конечных приращений. Функция Лагранжа в раскрытие неопределенностей.
лекция, добавлен 26.01.2014Решение задачи по теории вероятностей. Использование правил дифференцирования и формул для производных степенной и тригонометрической функций, нахождение производных. Отображение данных множеств при помощи кругов Эйлера. Область определения функции.
контрольная работа, добавлен 30.06.2021Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.
контрольная работа, добавлен 06.02.2012Характеристика разностного метода для решения задач и дифференциальных уравнений с коэффициентами, построенными по сетки или сеточной функции. Исследование формул, применяемых для определения переменной величины множеств в аналоговых пространствах.
презентация, добавлен 30.10.2013Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.
реферат, добавлен 22.05.2017Интерполяционная формула Лагранжа и Ньютона. Разработка математического обеспечения. Аналитическое выражение функции f(x). Функциональная зависимость между величинами y и x, описывающая количественную сторону данного явления. Теория приближения функций.
контрольная работа, добавлен 13.01.2013Сущность интерполяции, понятие разделенных и конечных разностей. Интерполяционная формула Лагранжа и Ньютона, вывод формулы Ньютона через разделенные разности и ее применение для равностоящих узлов интерполяции. Биноминальные многочлены. Теорема Polya.
курсовая работа, добавлен 15.06.2011Возникновение теории вероятностей как науки. Аксиоматический подход и элементарные понятия теории множеств. Операции сложения и умножения событий. Решение типовой задачи на формулу Байеса. Формула полной вероятности в обеспечении качества продукции.
контрольная работа, добавлен 25.05.2015Определение производной функции через предел. Общепринятые обозначения. Дифференцируемость. Геометрический и физический смысл производной. Производные высших порядков. Способы записи производных. Правила дифференцирования. Таблица производных функций.
реферат, добавлен 07.01.2023Обзор основных комбинаторных объектов. Ключевые понятия и элементы теории вероятностей. Теоремы сложения и умножения вероятностей. Классическая формула вероятности. Формула полной вероятности Байеса. Асимптотические формулы, теорема Муавра-Лапласа.
презентация, добавлен 10.01.2017Основы теории конечных и бесконечных множеств. Основные классы равномощных множеств. Выведение понятия мощности множества на основе равномощности. Сравнение множеств, их объединение, пересечение, разность и дополнение. Сущность аксиоматической теории.
контрольная работа, добавлен 25.06.2012Описание одного из доказательств теоремы Пифагора. Существующая формула теоремы Пифагора как упрощённый вариант её решения, который можно использовать только для количественной оценки результата. Выведение полной формулы, качественный анализ результата.
статья, добавлен 03.03.2018Логарифмическая производная функции. Производная степенно показательной функции. Производные и дифференциалы высших порядков. Формула Тейлора с остаточным членом в форме Пеано. Теоремы о дифференцируемых функциях. Формулы разложения элементарных функций.
контрольная работа, добавлен 26.05.2014Интерполирование как один из способов приближения функций. Интерполяционная формула Лагранжа. Формула Ньютона. Пример нахождения приближенного значения по интерполяционной формуле Лагранжа, Ньютона для значения заданного аргумента. Код программы Паскаль.
контрольная работа, добавлен 21.10.2017Применение понятия о характеристических функциях подмножеств, теоремы о порядках множества подмножеств конечного множества для двух частных случаев. Конечное несамопринадлежащее множество простой структуры. Схема алгоритма определения порядка множества.
статья, добавлен 26.04.2019Вариационный подход Ритца. Схема метода Ритца. Базис из функций с финитным носителем. Пример построения схемы конечных элементов. Интерполяционный многочлен Лагранжа. Одномерные элементы, ассоциируемые с ними иерархические базисные функции, аппроксимации.
курсовая работа, добавлен 12.12.2010Формула Архимеда для объема шара. Доказательство теоремы Ферма-Эйлера о представлении простых чисел в виде суммы двух квадратов. Построение циркулем и линейкой правильного семнадцатиугольника. Формула для определения площади треугольника по его сторонам.
методичка, добавлен 25.11.2013Роль интерполяции функций в вычислительной математике. Построение таблично заданных функций, которые совпадают со значениями исходной функции в некотором числе точек. Алгоритм построения интерполяции с помощью интерполяционного полинома Лагранжа.
контрольная работа, добавлен 03.06.2015Понятие условного экстремума и способы его определения. Разработка алгоритма нахождения экстремума функции методом множителей Лагранжа. Применение данного метода при составлении плана выпуска изделий, обеспечивающего максимальную прибыль от их реализации.
курсовая работа, добавлен 20.10.2012Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
реферат, добавлен 03.10.2012- 22. Метод прогонки
Анализ методов конечных элементов и разностных схем, решающих системы линейных алгебраических уравнений. Характеристика построения матрицы с доминирующей главной диагональю. Обоснование формул в системе краевой задачи для трехточечного уравнения.
презентация, добавлен 30.10.2013 Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016Исследование процесса кратного интегрирования при дифференциальном исчислении функций. Определение частных производных функций двух переменных и установление их геометрического смысла. Анализ правил дифференцирования и табличных производных функции.
курсовая работа, добавлен 26.05.2015Возникновение дифференциальной геометрии. Доказательство теорем о пределах. Исследование функции на экстремумы, свойства непрерывных функций и производные. Теоремы о дифференцируемых функциях. Биографии ученых, внёсших вклад в развитие дифференциалов.
курсовая работа, добавлен 11.02.2010