Методы решения задач на условный экстремум
Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.
Подобные документы
Теоремы о дифференцировании сложной функции двух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. Интегрирование тригонометрических, рациональных функций, некоторых видов иррациональностей. Задача и теорема Коши.
шпаргалка, добавлен 25.01.2016Математическая постановка задач оптимального управления. Понятие функционала, его свойства и виды: Лагранжа, Майера, Больца. Понятие оптимальной ширины полосы пропускания системы. Основы вариационного исчисления. Условия относительного экстремума.
курс лекций, добавлен 19.09.2017Понятие производной, ее геометрический, физический смысл. Производные высших порядков, изучение функции с помощью производной. Достаточные условия экстремума функции: нахождение экстремума, точка перегиба графика функции. Применение производной в алгебре.
реферат, добавлен 10.05.2009Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.
контрольная работа, добавлен 04.11.2012Поиск экстремума функции одной и нескольких переменных. Интерполяция функций интерполяционными полиномами, способы их вычисления и анализ сходимости (по классическому примеру Рунге). Определение ошибки интерполяции. Построение графиков полиномов Чебышева.
презентация, добавлен 21.09.2013- 31. Производная
Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.
реферат, добавлен 26.06.2013 Рассмотрение алгоритма решения задачи с дифференцируемой целевой функцией методом замены переменных и методом множителей Лагранжа. Определение особенностей постановки задачи условной минимизации с ограничениями-равенствами ограничениями-неравенствами.
презентация, добавлен 09.07.2015Определение понятия нелинейного программирования. Раскрытие специфики нелинейных программ и методов их решения. Изучение градиентных методов решения задач выпуклого программирования. Решение задач нелинейного программирования методом множителей Лагранжа.
контрольная работа, добавлен 26.12.2011История зарождения и создания линейного программирования. Разработка симплекс-метода и рассмотрение задач отыскания условного экстремума функции. Графический способ решения различных задач линейного программирования, изображение геометрических условий.
курсовая работа, добавлен 04.04.2011Монотонность функции. Исследование стационарных точек. Локальный и глобальный экстремум. Выпуклость и перегибы графика функции. Интерполяция и аппроксимация функций. Интерполяционный полином Лагранжа. Формула Тейлора. Понятие об эмпирических формулах.
реферат, добавлен 17.01.2011Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
курсовая работа, добавлен 25.04.2014Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.
презентация, добавлен 22.03.2021Сущность основного условия для достижения функцией локального максимума в точке. Исследование достаточных критериев локального экстремума. Применение формулы Тейлора для доказательства теоремы о существовании минимума функции в стационарной точке.
доклад, добавлен 20.05.2014Сущность и характерные особенности функции нескольких переменных, порядок расчета и анализа ее дифференциала. Определение частных производных. Применение дифференциала к приближенным вычислениям. Метод множителей Лагранжа и наименьших квадратов.
методичка, добавлен 19.09.2017Определение дифференциала функции, его геометрический смысл и параметры. Инвариантность формы дифференциала, его применение в приближенных вычислениях. Локальный экстремум, теоремы Ферма, Ролля, Лагранжа и Коши, их сущность, доказательства и применение.
лекция, добавлен 07.07.2015Использование в градиентных методах итерационной процедуры, вектор направления убывания функции. Безусловный минимум функции, поиск точки экстремума. Методы Ньютона, покоординатного и скорейшего спуска, градиента с постоянным и переменным шагом.
презентация, добавлен 07.07.2015Итеративные методы для решения задач оптимизации аналитическими методами. Регулярные алгоритмы в задачах на безусловный и условный экстремумы. Поисковые и беспоисковые алгоритмы. Алгоритмы стохастической аппроксимации как вероятностные алгоритмы.
лекция, добавлен 22.07.2015Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
контрольная работа, добавлен 10.01.2012Понятие о симплекс-методе и способы нахождения базисного решения. Определение крайней точки выпуклого множества. Преобразование Гаусса-Жордана и его применение. Симплекс-метод с искусственным базисом (М-метод). Исследование функции f(х) на экстремум.
презентация, добавлен 09.07.2015Эксперимент по нахождению экстремума методом крутого восхождения. Движение по градиенту – "крутое восхождение". Уточнение максимального значения функции отклика с помощью плана второго порядка. Нахождение интерполяционной функции (уравнения регрессии).
курсовая работа, добавлен 31.05.2016Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.
контрольная работа, добавлен 18.12.2013Вычисление неопределенного интеграла. Изображение фигуры, ограниченной параболой и прямой, определение её площади. Исследование сходимости степенного ряда на концах интервала. Применение достаточного признака экстремума функции независимых переменных.
контрольная работа, добавлен 07.04.2017Характеристика значения оптических плотностей для плашек после сканирования при разных значениях яркости. Определение необходимого условия экстремума функции многих переменных, которое приводит к системе уравнений. Расчет задачи в матричном виде.
контрольная работа, добавлен 23.09.2014Характеристика математического программирования как отдельной дисциплины. Понятие линейного, нелинейного и динамического программирования. Методы решения задач: графический, симплексный методы; постановка двойственной задачи; метод множителей Лагранжа.
реферат, добавлен 15.08.2014Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.
контрольная работа, добавлен 23.01.2015