Методы решения задач на условный экстремум

Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.

Подобные документы

  • Определение унимодальности функции. Точные и приближенные методы поиска экстремума. Метод перебора, по разрядного поиска, дихотомии, золотого сечения, средней точки, хорд и метод Ньютона. Сравнение методов оптимизации по скорости вычисления и точности.

    курсовая работа, добавлен 21.12.2015

  • Трудности решения задач линейного программирования как задач на нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений. Классификация оптимизации: о пищевом рационе, планировании производства и загрузке оборудования.

    контрольная работа, добавлен 20.12.2013

  • Особенности нахождения наибольшего и наименьшего значения функции нескольких переменных. Понятие и сущность точек экстремума и границы множества. Математическое определение частных производных функции, характеристика ее значения в критических точках.

    презентация, добавлен 17.09.2013

  • Задачи одномерной безусловной минимизации. Численные методы поиска многомерного безусловного экстремума. Свойство унимодальной функции. Метод поразрядного поиска, перебора, деления отрезка пополам, золотого сечения, средней точки, Ньютона и хорд.

    курсовая работа, добавлен 15.11.2011

  • Геометрический и физический смысл производной. Правила дифференцирования, производные высших порядков. Изучение функции с помощью производной. Возрастание и убывание функции, экстремум функции. Общая схема исследования функции и построение ее графика.

    реферат, добавлен 10.04.2010

  • Преобразование графиков тригонометрических функций путем параллельного переноса, сжатия и расширения. Анализ промежутков монотонности функции. Точки экстремума. Формирование навыков решения и построения тригонометрических уравнений и неравенств.

    презентация, добавлен 02.05.2012

  • Математический анализ как наука. Изучение задач на нахождение максимума и минимума. Экстремумы одной, трех и многих переменных. Метод вычисления критериев Сильвестера. Множитель Лагранжа. Стационарные точки функций. Факты дифференциального исчисления.

    дипломная работа, добавлен 16.01.2014

  • Исследование поведения функций одной переменной, построение графиков. Изучение порядка математических действий по отысканию локального экстремума. Поиск наибольших и наименьших значений непрерывной на отрезке функции. Точки пересечения с осями координат.

    лекция, добавлен 26.01.2014

  • Геометрический смысл производной. Зависимость между дифференцируемостью и непрерывностью функции. Таблица элементарных производных. Признаки постоянства, возрастания и убывания функций. Максимум и минимум функции. Признаки существования экстремума.

    контрольная работа, добавлен 19.01.2013

  • Изучение формулы бесконечно убывающей геометрической последовательности. Способы задания функции одной переменной. Геометрический смысл понятия "предел". Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз.

    лекция, добавлен 26.01.2014

  • Определение и характеристика производной функции в направлении вектора. Ознакомление с результатами исследования функции на экстремум. Расчет и анализ дискриминанта уравнения и интеграла. Вычисление площади фигуры, ограниченной прямой и параболой.

    контрольная работа, добавлен 28.01.2017

  • Первое доказательство частного случая центральной предельной теоремы. Определение нормального распределения. Свойства нормальной кривой Гаусса. Определение экстремума функции. График функции плотности распределения. Максимальная дифференциальная энтропия.

    реферат, добавлен 05.03.2020

  • Исследование и построение графика функции. Вычисление односторонних пределов и точек пересечения с осями координат. Расчет частных производных первого порядка. Изучение на экстремум функции двух переменных. Проведение поиска выпуклостей и точек перегиба.

    контрольная работа, добавлен 22.10.2013

  • Механизм вычисления неопределенного интеграла. Расчет площади фигуры, ограниченной заданными линиями. Доказательство расходимости несобственного интеграла. Определение экстремума функции и криволинейного интеграла. Решение дифференциального уравнения.

    контрольная работа, добавлен 25.09.2017

  • Характеристика частных производных по переменным в определенной точке. Сущность дифференциалов высших порядков, их классификация и задача. Основные экстремумы функции двух переменных. Главные правила нахождения наибольших и наименьших значений функции.

    лекция, добавлен 29.09.2013

  • Установление точек разрыва функции, составление уравнения асимптот. Поиск координат вершины параболы. Определение условий существования экстремума в стационарной точке. Поиск интеграла по формуле Ньютона-Лейбница. Решение дифференциального уравнения.

    контрольная работа, добавлен 25.03.2014

  • Вычисление значения функции в точках, подозрительных на глобальный экстремум. Нахождение наклонной асимптоты, точек, в которых производная функции равна нулю. Определение промежутков выпуклости и точек перегиба функции. Построение эскиза графика функции.

    контрольная работа, добавлен 26.04.2012

  • Рассмотрение сущности принципа Лагранжа. Описание его применения для решения экстремальных задач без ограничений, конечномерных задач с ограничениями типа равенств, задач с ограничениями типа неравенств и равенств, задач выпуклого программирования.

    лекция, добавлен 06.09.2017

  • Рассмотрение понятий: аргумента, области определения. Методика изучения линейной, квадратной и кубической функции. Изучение уравнений параболического типа. Основные характеристики математических функций. Достаточные условия экстремума уравнения.

    курсовая работа, добавлен 05.05.2015

  • Описание интерполирования методом Лагранжа. Интерполяционная формула Ньютона. Характеристика пользовательского интерфейса программной реализации рассматриваемых методов. Алгоритм вывода графика проинтерполированной функции. Информация о программе.

    контрольная работа, добавлен 23.04.2011

  • Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.

    лекция, добавлен 29.09.2013

  • Построение теории экстремумов функций многих переменных, изложенной в учебнике по дифференциальному исчислению О. Коши. Впервые в задаче на экстремум функции он применил критерий Сильвестра положительной (отрицательной) определенности квадратичных форм.

    статья, добавлен 05.12.2018

  • Ознакомление с деятельностью Архимеда, который открыл все полуправильные многогранники, развил учение о конических сечениях, дал геометрический способ решения кубических уравнений. Характеристика работы "Квадратура параболы". Анализ понятия экстремума.

    реферат, добавлен 11.09.2014

  • Определение экстремумов, точек перегиба и асимптот функции, использование команды polyroots. Исследование функции одной, двух переменных. Вычисление неопределенного постоянного множителя, Координаты стационарных точек. Применение функции CreateMesh.

    контрольная работа, добавлен 10.04.2020

  • Связь между понятиями аналитических и гармонических функций. Отличия отличной от постоянной гармонической функции, что не может достигать экстремума во внутренней точке области определения. Граничная теорема единственности теории аналитических функций.

    курсовая работа, добавлен 14.06.2023

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.