Метод математической индукции
Индуктивный и дедуктивный методы рассуждений в основе математического исследования. Понятия полной и неполной индукции. Области применения, метод и принцип математической индукции. Решение примеров, доказательства равенств, неравенств, деления чисел.
Подобные документы
Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.
реферат, добавлен 15.12.2011Понятие математической индукции. Полная и неполная индукция. Дедуктивный и индуктивный методы рассуждений. Обнаружение математических закономерностей Суть и условия применения метода математической индукции в образовательном процессе, в решении задач.
контрольная работа, добавлен 17.09.2009Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.
реферат, добавлен 06.04.2009Выводы на основе наблюдений, опытов, полученные путем заключения от частного к общему. Значение индуктивных выводов в экспериментальных науках. Примеры применения индуктивного и дедуктивного методов рассуждений при решении математических задач.
презентация, добавлен 16.02.2014Характеристика особенностей метода математической индукции и аксиомы Пеано. Аспекты вычисление сумм и произведений. Методика доказательства тождеств и неравенств с помощью математической индукции. Анализ числа отображений k-множества в m-множество.
учебное пособие, добавлен 25.11.2013Исследование особенностей математической индукции, одного из методов доказательства истинности некоего утверждения для всех натуральных чисел. Характеристика аксиомы Пеано, аксиомы существования минимума, доказательства аксиомы индукции как теоремы.
статья, добавлен 25.01.2012Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.
контрольная работа, добавлен 24.11.2012Математическая индукция как способ математического доказательства, роль индуктивных выводов в экспериментальных науках. Интерпретация данных в зависимости от выбранной аксиоматики. Полная и неполная индукция, их применение для доказательства теорем.
реферат, добавлен 02.03.2013Средние величины, неравенство Коши. Доказательство неравенств методами "от противного" и математической индукции. Использование неравенства Коши-Буняковского при решении тригонометрических уравнений. Решение уравнений с помощью замечательных неравенств.
курсовая работа, добавлен 23.10.2017Правила аксиоматического построения математических теорий. Аксиоматическое построение системы натуральных чисел. Аксиомы Пеано, метод математической индукции. Умножение целых неотрицательных чисел в количественной теории, таблица и законы умножения.
реферат, добавлен 10.01.2017- 11. Числовые системы
Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.
реферат, добавлен 29.10.2013 Средние величины и классические неравенства. Неравенство между средним арифметическим и средним геометрическим. Доказательство неравенств методом "от противного" и методом математической индукции. Решение уравнений с помощью замечательных неравенств.
реферат, добавлен 19.07.2016Направления исследований в дискретной математике, направления их реализации и анализ результатов. Виды теорем и способы их доказательства: цепочка заключения, от противного, метод переборов и математической индукции, комбинированное доказательство.
контрольная работа, добавлен 23.02.2013Характеристика понятия и сущности, способов задания, основных операций, свойств характеристических функций множеств. Изучение декартового произведения множеств, сравнение их мощности, описание формул включений и исключений. Метод математической индукции.
лекция, добавлен 28.04.2015Использование свойств конечных сумм, для получения модификации неравенств Чебышёва. Характеристическое свойство арифметической прогрессии. Формулы суммирования, выводимые способом математической индукции. Сущность метода неопределённых коэффициентов.
курсовая работа, добавлен 28.05.2014Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.
учебное пособие, добавлен 28.12.2013Главный метод математической индукции. Преобразование логарифмических и тригонометрических выражений. Характеристика степени действительного числа и многочленов. Дифференциальное исчисление функции одной переменной. Показательные уравнения и неравенства.
учебное пособие, добавлен 18.11.2014Изучение особенностей операций над множествами. Характеристика метода математической индукции. Рассмотрение аспектов применения бинома Ньютона. Анализ способ решения примером с комплексными числами и пределами. Методы вычисления производной и интеграла.
учебное пособие, добавлен 08.11.2013Применение законов сложения и умножения и вычисления результата примеров. Доказывание истинности равенства методом математической индукции. Теоретико-множественное обоснование вычитания и умножения. Натуральный смысл числа в результате измерения.
контрольная работа, добавлен 21.05.2014Комплексная форма интеграла Фурье. Оригинал и изображение в преобразовании Лапласа. Доказывание теоремы дифференцирования оригинала методом математической индукции. Применение элементарных методов при разложении правильной дроби на сумму простейших.
курсовая работа, добавлен 25.03.2014Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.
контрольная работа, добавлен 03.06.2012Многоугольник как замкнутая ломаная без самопересечений. Доказательство теоремы методом математической индукции. Треугольник общего вида. Центр правильного многоугольника с четным числом сторон. Отношение периметров двух подобных многоугольников.
контрольная работа, добавлен 06.06.2012Составление математической модели природных явлений. История возникновения, основные понятия и свойства логарифмов. Стандартные и нестандартные способы решения логарифмических уравнений и неравенств. Метод потенцирования, таблицы антилогарифмов Непера.
реферат, добавлен 15.10.2021Решение практических задач математическими методами путем формулировки задачи, выбора метода исследования полученной математической модели, анализа полученного математического результата. Особенности построения и требования к математическим моделям.
реферат, добавлен 03.12.2014- 25. Численные методы
Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.
методичка, добавлен 26.09.2016