Применение гибридных самоорганизующихся нейронных сетей и быстрого дискретного вейвлет-преобразования для построения систем классификации сигналов
Топологическая модель быстрой нейронной сети. Применение гибридных быстрого дискретного вейвлет-преобразования для построения систем классификации сигналов. Структурный синтез быстрых нейронных сетей. Модели и концепции эволюционной кибернетики.
Подобные документы
Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Методика составления вспомогательной спектральной задачи для последующего построения дискретного лапласиана в торе. Характеристика программного приложения для определения произведения циркулянта на вектор с применением быстрого преобразования Фурье.
учебное пособие, добавлен 09.01.2017Исследование решения задачи автоматического распознавания коридоров набивных стеллажей вилочными погрузчиками с использованием нейронной сети. Описания принципа работы и структуры нейронной сети. Проверка работоспособности построенной нейронной сети.
статья, добавлен 25.02.2019Эволюция поколений символообрабатывающих ЭВМ. Этапы развитие искусственных нейронных сетей. Сравнение машины фон Неймана с биологической нейронной системой. Нейроинформатика как способ решения различных задач с помощью искусственных нейронных сетей.
лекция, добавлен 06.09.2017Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.
презентация, добавлен 03.12.2013Определение видов нейронных сигналов, методики обучения и тестирования в зависимости от типа используемой автономной навигационной системы. Рассмотрение случаев, когда счисление ведётся на основе данных от лага, гирокомпаса или инерциальной системы.
статья, добавлен 28.10.2018Рассмотрение и характеристика сущности процесса реализации нейронной сети для автономной навигации мобильного робота, используя данные, собранные с ультразвуковых датчиков, которые установлены на его корпусе. Ознакомление с архитектурой нейронной сети.
статья, добавлен 19.02.2019Методика разработки состязательных атак, которые основаны на словах и показывают возможность и силу изменения предсказываемого класса нейросети. Анализ особенностей применения регрессионных значений Шепли для интерпретации глубоких нейронных сетей.
дипломная работа, добавлен 28.11.2019- 84. Временная локализация дефектов опор жидкостного трения на основе непрерывного вейвлет-преобразования
Преобразование Фурье - метод декомпозиции сигнала на комплексные экспоненциальные функции различных частот. Система компьютерной математики MATLAB - наиболее подходящий программный продукт для использования вейвлетов в анализе вибрационных сигналов.
статья, добавлен 24.08.2020 Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.
статья, добавлен 17.03.2021Понятие и основные компоненты нейронных сетей, классификация образов. Обучение по алгоритму обратного распространения ошибок. Сети с радиальными базисными функциями. Кластеризация образов, самоорганизующаяся карта признаков. Дискретная сеть Хопфилда.
книга, добавлен 18.01.2011Краткий обзор методов классификации, особенности их использование при проведении специализированных медицинских обследований. Применение дискриминантного анализа для выявления разницы между выборками. Специфика организации и топологии нейронных сетей.
статья, добавлен 28.02.2016- 89. Нейронные сети
Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.
реферат, добавлен 20.02.2009 Опыт применения нейронных сетей в экономических задачах. Моделирование эмпирических закономерностей по ограниченному числу экспериментальных и наблюдаемых данных. Табличный метод - основа искусственного интеллекта. Мониторинг банковской системы.
реферат, добавлен 15.03.2009Повышение эффективности процесса построения экспертных систем путем разработки информационной технологии. Использование развивающейся системы представления знаний на базе модели искусственных нейронных сетей, системы распределенного сетевого ввода данных.
автореферат, добавлен 01.09.2018Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Этапы становления и развития нейронных сетей. Головной мозг, нейронные сети и компьютеры. Программные и аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей. Способы распознавания образов предметов.
реферат, добавлен 17.05.2013Возможности современных информационных технологий и Интернета. Разработка клиент-серверной архитектуры построения больших искусственных нейронных сетей. Идентификация, аутентификация пользователей и защита информации в системе дистанционного обучения.
статья, добавлен 27.05.2018Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.
статья, добавлен 03.02.2021Разработка модели обнаружения злоумышленника в информационной системе. Анализ результатов обучения и реализации нейронных сетей на основе персептрона и линейных нейронных сетей в пакете Matlab. Выявление аномального поведения пользователя в системе.
статья, добавлен 30.04.2018Ассоциативная память на основе искусственной нейронной сети. Извлечение информации из ассоциативной памяти. Степень ортогональности и ее оценка при помощи Евклидова расстояния. Ключевые характеристики, определяющие качество пространственной группировки.
статья, добавлен 29.06.2017Особенности применения нейронной сети с использованием библиотеки OpenCV для распознавания эмоций. Обучение нейронной сети, распознавание лиц из базы данных Yale Facesс помощью обучающего набора данных в рамках авторского проекта "Сурдотелефон".
статья, добавлен 25.02.2019- 99. Нейронные сети
Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.
реферат, добавлен 29.12.2011 Обзор искусственных нейронных сетей, состоящих из множества взаимодействующих простых процессоров и представляющих собой устройства параллельных вычислений. Анализ структуры связей детали сетевой конструкции. Вычисления сигналов и значений нейронов.
лекция, добавлен 21.10.2013