Применение гибридных самоорганизующихся нейронных сетей и быстрого дискретного вейвлет-преобразования для построения систем классификации сигналов
Топологическая модель быстрой нейронной сети. Применение гибридных быстрого дискретного вейвлет-преобразования для построения систем классификации сигналов. Структурный синтез быстрых нейронных сетей. Модели и концепции эволюционной кибернетики.
Подобные документы
Основные принципы вейвлет-преобразования. Использование алгоритма, позволяющего извлекать информацию о форме изображенного объекта. Методика индексирования цветовых гистограмм и текстур. Цветовые особенности картинки, включаемые в сигнатуру изображения.
диссертация, добавлен 27.10.2015Проблема распознавания кривых линий на сложном фоне шумовых точек и близких соседних кривых. Главные требования к обработке в современных экспериментах. Понятие и особенности эластичных нейронных сетей. Робастные методы оценки параметров и их применение.
статья, добавлен 08.02.2013Разработка методологии анализа сигналов с использованием технологии Data Mining, алгоритмов сегментации сигналов, классификации их элементов и построения структурной модели. Создание программного обеспечения, реализующего предложенные алгоритмы.
автореферат, добавлен 31.07.2018Основные преимущества использования нейронных сетей при обучении автоматизированному переводу. Описание общей схемы и принципа работы нейронной сети, применение данной технологии в системе NMTS. Характеристика технологий автоматического перевода.
статья, добавлен 28.01.2019Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.
презентация, добавлен 16.10.2013- 106. Разработка устройства для экспертной диагностики систем на основе нечеткой логики нейронных сетей
Определение работоспособности технологической системы по косвенным физическим параметрам. Алгоритмизация диагностики, разработка формальной модели принятия и оценки решений. Создание экспертного устройства нейронных сетей на основе нечеткой логики.
статья, добавлен 15.05.2017 Изучение механизмов функционирования отдельных нейронов и их наиболее важного взаимодействия, для познания процессов поиска, передачи и обработки информации, происходящей в нейронной сети. Синапс как структура и функциональный узел между двумя нейронами.
статья, добавлен 09.06.2021Назначение графических управляющих элементов NNTool, подготовка данных, создание нейронной сети, обучение и прогон. Разделение линейно-неотделимых множеств. Задача аппроксимации. Распознавание образов. Импорт-экспорт данных. Применение нейронных сетей.
статья, добавлен 23.01.2014Применение искусственных нейронных сетей. Выработка алгоритма синтеза контроллера, формирующего порог, который обеспечит заданные выходные реакции объекта управления (устройства), с использованием математического аппарата искусственных нейронных сетей.
статья, добавлен 02.04.2019- 110. Алгоритмы и программная система классификации полутоновых изображений на основе нейронных сетей
Топология нейронной сети с добавленной сверточной плоскостью, модифицированной активационной функцией нейронов, обеспечивающая выделение сюжета на произвольном фоне. Анализ количества ложных обнаружений на различных итерациях процедуры самонастройки.
автореферат, добавлен 02.09.2018 Исследование способов повышения эффективности использования аппаратных ресурсов ЭВМ при вычислении быстрого преобразования Фурье. Адаптация вычисления быстрого преобразования Фурье с учетом использования технологии Compute unified device architecture.
статья, добавлен 24.05.2018Нейронные сети для решения задач классификации или кластеризации многомерных данных. Алгоритм работы блока функции преобразования. Рекурсивные сети. Программа Акинатор. Прохождение последовательности сигналов через сеть. Основные свойства персептрона.
курсовая работа, добавлен 19.07.2012Изучение структуры сердца, проводящей системы, электрофизиологии сердца. Характеристика деполяризации и реполяризации. Рассмотрение основных компонентов электрокардиограммы. Краткий обзор преобразования Фурье. Исследование основы вейвлет-преобразования.
курсовая работа, добавлен 10.04.2017Вейвлетные преобразования: дискретные, непрерывные, обратные, стационарные, одномерные и двумерные, их функции, задание граничных условий. Декомпозиция и реконструкция сигнала. Многоуровневое вейвлет-разложение. Функции коэффициентов аппроксимации.
лекция, добавлен 15.11.2018Определение количества информативных параметров, полученных на основе дисперсионного и ковариационного анализов результатов вейвлет-преобразования спектрально-нестационарных вибросигналов. Диагностика состояния промышленных вибрационных объектов.
статья, добавлен 14.07.2016Применение методов классификации, моделирования и прогнозирования, основанных на применении деревьев решений, искусственных нейронных сетей, генетических алгоритмов, эволюционного программирования. Задачи и возможности Data Miner в Statistica 8.
реферат, добавлен 19.12.2014Предложен формальный алгоритм построения полносвязной части нейросетевого классификатора. Описаны подходы к подбору гиперпараметров. При использовании данного алгоритма удалось снизить общее количество настраиваемых параметров полносвязной нейронной сети.
статья, добавлен 02.04.2019Характеристика двумерной апериодической свертки и корреляции. Введение в теорию ортогональных преобразований. Запись алгоритма быстрого преобразования Фурье в векторно-матричной форме. Линейная фильтрация сигналов во временной и частотной областях.
учебное пособие, добавлен 05.04.2015Понятие быстрого преобразования Фурье. Вычисление БПФ коэффициентов и характеристика восьмиточечного алгоритма. Одномерное прямое БПФ и вычисление одномерного обратного преобразования Фурье. Операции с многозональными и псевдозональными изображениями.
реферат, добавлен 26.02.2015Структура искусственной нейронной сети и принципы ее работы. Нейросетевая классификация. Создание программы, которая используя технологии нейронных сетей, сможет распознавать рукописные буквы. Центрирование изображения. Пример работы с приложениями.
статья, добавлен 30.05.2013Разработка программного модуля диагностики поведения роторной системы на основе нелинейных авторегрессионных моделей нейронных сетей и алгоритма обучения Левенберга-Марквардта. Применение искусственной нейронной сети в анализе динамических процессов.
статья, добавлен 01.02.2019- 122. Искусственные сети
Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.
курсовая работа, добавлен 04.12.2012 - 123. Применение многослойных радиально-базисных нейронных сетей для верификации реляционных баз данных
Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.
статья, добавлен 29.05.2017 Исследование модели, основанной на использовании сверточных нейронных сетей. Выбор модели ResNet18 с финальной функцией активации Softmax и функцией потерь CrossEntropy. Особенность использования языка программирования Python и библиотеки PyTorch.
дипломная работа, добавлен 10.12.2019Базовые понятия и основные задачи искусственного интеллекта (ИИ). История развития систем ИИ. Представление входных данных. Различные подходы к построению систем ИИ. Нейронные сети Хопфилда и Хэмминга. Основные положения и применение нейронных сетей.
курсовая работа, добавлен 05.06.2011