Линейная алгебра. Аналитическая геометрия
Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.
Подобные документы
Определение периметра и площади треугольника, длины ребра, объем, уравнения плоскости пирамиды по координатам вершин данных фигур. Приведение уравнения кривой второго порядка к каноническому виду. Решение системы линейных уравнений с тремя неизвестными.
контрольная работа, добавлен 15.11.2013Скалярное произведение векторов. Смешанное и векторное произведения векторов. Прямая на плоскости. Кривые второго порядка на плоскости. Плоскость и прямая в пространстве. Понятие о поверхностях второго порядка в трехмерном пространстве. Сфера и эллипсоид.
учебное пособие, добавлен 23.03.2013Равенство матриц и их транспонирование. Правила сложения матриц. Умножение матрицы на число. Свойство определителя. Способы вычисления определителей. Ранг матрицы. Элементарные преобразования матрицы. Вычисление обратной матрицы высокого порядка.
контрольная работа, добавлен 06.12.2011Взаимное расположение точек и прямых в пространстве и на плоскости. Уравнение прямой по точке и вектору нормали, заданной угловым коэффициентом. Параметрические и канонические уравнения прямой в пространстве. Уравнение прямой, проходящей через две точки.
курсовая работа, добавлен 08.12.2015Координаты на прямой и на плоскости. Простейшие задачи аналитической геометрии на плоскости. Линии первого порядка. Геометрические свойства линий второго порядка. Преобразование уравнений при изменении координат. Уравнение поверхности и уравнения линии.
учебное пособие, добавлен 14.03.2014Определение абсолютной величины смешанного произведения векторов. Рассмотрение и характеристика условия параллельности и перпендикулярности прямых. Ознакомление с операциями сложения матриц. Исследование и анализ процесса умножения матрицы на число.
лабораторная работа, добавлен 29.11.2015Система линейных алгебраических уравнений: однородная, квадратная, совместная и несовместная. Матричная форма системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования матрицы. Особенности теоремы Кронекера-Капелли.
контрольная работа, добавлен 24.12.2014Характеристика параллельных прямых на плоскости в курсе планиметрии. Теоремы как признаки параллельности прямых, а также роль их аксиомы. Параллельность прямых в пространстве и особенности скрещивающихся линий. Теорема о линиях и ее доказательство.
реферат, добавлен 07.07.2014Понятие и свойства вектора как математической абстракции объекта. Исследование декартовой системы координат в пространстве. Расчет плоскостей. Виды параметрических уравнений прямой. Связь полярных координат с декартовыми. Гиперболический параболоид.
лекция, добавлен 22.11.2015Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.
лекция, добавлен 26.08.2015Элементы линейной алгебры, векторного анализа и аналитической геометрии. Определение значения матричного многочлена. Разложение элемента по рядам, сведение к треугольному виду. Матричное уравнение. Исследование системы на совместность методом Гаусса.
учебное пособие, добавлен 12.05.2014Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.
лекция, добавлен 12.03.2013- 63. Обратимость линейных дифференциальных операторов второго порядка в однородных пространствах функций
Изучение линейных дифференциальных операторов (уравнений) второго порядка в однородном пространстве функций, определенных на всей оси. Условия их обратимости. Условия разрешимости классов уравнений второго порядка с помощью операторных матриц 2 порядка.
статья, добавлен 01.02.2019 Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений
реферат, добавлен 26.02.2010- 65. Линейная алгебра
Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.
контрольная работа, добавлен 22.12.2019 Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.
презентация, добавлен 21.09.2013Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.
контрольная работа, добавлен 06.08.2013- 68. Линейная алгебра
Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.
учебное пособие, добавлен 17.04.2013 Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.
лекция, добавлен 30.11.2010Вычисление суммы и разности заданных квадратных матриц, произведения матрицы и числа. Расчет детерминантов второго, третьего и четвертого порядка и поверка вычислений. Определение переменной в системе линейных уравнений с помощью матричного метода.
задача, добавлен 31.07.2011Простейшие тригонометрические уравнения в алгебре. Порядок разложения равенств на множители. Изучение метода подстановки как алгебраического способа решения системы линейных уравнений. Дробно-рациональные и иррациональные тригонометрические уравнения.
реферат, добавлен 31.03.2014Векторная алгебра и кривые второго порядка. Аналитическая геометрия в пространстве. Определенный интеграл и его геометрические приложения. Обобщение понятия определенного интеграла. Функции нескольких переменных. Двойные и несобственные интегралы.
учебное пособие, добавлен 03.10.2012Уравнения прямой на плоскости, его тождественное преобразование и основные понятия. Взаимное расположение прямых. Расстояние от точки до прямой. Семейство прямых на плоскости. Геометрический смысл линейного неравенства и системы линейных неравенств.
реферат, добавлен 16.05.2013Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.
реферат, добавлен 06.03.2010Переход от общих уравнений прямой к каноническим. Взаимное расположение прямых в пространстве, вычисление угла между ними. Порядок решения системы уравнений по формулам Крамера. Определение направляющего вектора. Проверка условия коллинеарности.
контрольная работа, добавлен 30.10.2019