Дзета-функция Римана
Изучение дифференциального и интегрального исчисления. Анализ применения Дзета-функции Римана в теории чисел. Определение понятия функции: закона, по которому каждому элементу множества X ставится в соответствие один или несколько элементов множества Y.
Подобные документы
Особенности нахождения наибольшего и наименьшего значения функции нескольких переменных. Понятие и сущность точек экстремума и границы множества. Математическое определение частных производных функции, характеристика ее значения в критических точках.
презентация, добавлен 17.09.2013Рассмотрение однородной краевой задачи Римана с краевым условием на действительной оси для функции, аналитической в комплексной плоскости кроме точек действительной оси. Вывод формулы, которая определяет аналитическую в верхней полуплоскости функцию.
статья, добавлен 17.08.2020Усвоение межпредметных понятий и их основа формирования целостной естественнонаучной картины мира. Функция как математическое понятие, отражающее связь элементов одного множества с элементами из другого множества. Географические и декартовы координаты.
реферат, добавлен 01.07.2015Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.
лекция, добавлен 29.09.2014Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.
учебное пособие, добавлен 13.01.2014Характеристика интеграла и производной Римана-Лиувилля дробного порядка, интегрального уравнения Фредгольма, функции Гаусса. Исследование задачи с операторами дробного дифференцирования Сайго в краевом условии на характеристической части границы области.
статья, добавлен 31.05.2013- 32. Функция
Понятие независимой переменной и зависимой переменной функции. Методика построения графика функции - множества всех точек координатной плоскости, абсциссы которых равны значениям независимой переменной, а ординаты - соответствующим значениям функции.
презентация, добавлен 07.11.2012 Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.
лекция, добавлен 22.07.2015Понятие множества, его структура и главные элементы, существующие операции и порядок их реализации, способы задания. Сущность и методика пересечения, объединения, вычитания. Механизм и основные правила нахождения декартового произведения множества.
контрольная работа, добавлен 24.02.2015Рассмотрение множества действительных чисел. Свойства пределов, связанные с арифметическими операциями. Изображение действительных чисел бесконечными десятичными дробями. Пределы последовательности и граница функции, их показатели и точки разрывов.
курс лекций, добавлен 13.01.2014Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.
контрольная работа, добавлен 10.05.2016Понятия предела функции, замыкания множества и компактности в метрическом пространстве. Теория фильтров при изучении сходимости в топологических пространствах. Рефлексивное и транзитивное отношение предпорядка. Симметричный и антисимметричный предпорядок.
контрольная работа, добавлен 11.12.2012Исследование зависимости свойств и графика степенной функции от свойств степени с действительным показателем. Характеристика области определения, множества значений, функции на промежутке. Определение показателей с натуральным, четным и нечетным числом.
презентация, добавлен 02.03.2012Основы теории конечных и бесконечных множеств. Основные классы равномощных множеств. Выведение понятия мощности множества на основе равномощности. Сравнение множеств, их объединение, пересечение, разность и дополнение. Сущность аксиоматической теории.
контрольная работа, добавлен 25.06.2012Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014Описание свойства множества всех множеств – его несамоподобие, с использованием утверждения о количестве точек на прямой между двумя точками. Показано, что мощность множества всех множеств больше, чем мощность самоподобного множества; доказательства.
дипломная работа, добавлен 26.04.2019- 42. О функции Эйлера
Значение функции Эйлера в теории чисел и математике. Доказывание формулы Мертинга и изучение, на ее основе, точности аппроксимации среднего значения функции Эйлера соответствующим квадратичным полиномом. Понятие плотности значений функции Эйлера.
статья, добавлен 26.05.2017 Понятие множества, операции над ними. Основные элементарные функции, их графики. Односторонние пределы функции одной переменной. Бесконечно малые функции, их классификация. Непрерывность и дифференцируемость. Линии уровня и градиент функции переменных.
учебное пособие, добавлен 10.12.2012Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.
реферат, добавлен 17.01.2011Полное исследование функции и построение ее графика с использованием дифференциального исчисления. Расчет неопределенных интегралов с использованием методов интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных.
контрольная работа, добавлен 16.01.2015Применение персональных компьютеров к решению проблем выявления закономерности распределения простых чисел и подтверждения гипотезы Эйлера–Гольдбаха. Доказывание существования бесконечного множества простых чисел. Вычисление таблицы простых чисел.
статья, добавлен 26.04.2019Понятие и общая математическая характеристика множества, его главные свойства и отличительные признаки. Способы задания числовых значений. Описание основных операций, проводимых над множествами: объединение и пересечение. Диаграмма Эйлера-Венна.
контрольная работа, добавлен 04.12.2013Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.
лекция, добавлен 29.09.2014Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.
лекция, добавлен 09.07.2015Понятие и порядок определения точки сгущения множества. Исследование непрерывных функций. Частная производная функции. Дифференцируема в точке функция и основные требования к ней. Определение касательного вектора и плоскости к поверхности. Матрица Якоби.
шпаргалка, добавлен 11.04.2012