Дзета-функция Римана

Изучение дифференциального и интегрального исчисления. Анализ применения Дзета-функции Римана в теории чисел. Определение понятия функции: закона, по которому каждому элементу множества X ставится в соответствие один или несколько элементов множества Y.

Подобные документы

  • Подходы к определению понятия "функция", графики функции. Изучение основных элементарных функций в школьном курсе математики: линейной, квадратичной, кубической, обратной пропорциональности, степенной, показательной, логарифмической и тригонометрической.

    курсовая работа, добавлен 01.03.2013

  • Основные виды степенной функции и ее свойства. Область определения функции. Частные случаи степенной функции. Определение возрастания и убывания функции. Построение графика функции при положительном и отрицательном значениях степенного показателя.

    презентация, добавлен 05.03.2012

  • Условие критичности частного уравнения или неравенства. Поиск множества всех критических точек уравнения. Определение граничных значений параметров в произвольном пространстве на плоскости. Понятие открытого множества. Графическое решение неравенств.

    лекция, добавлен 01.09.2017

  • Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.

    презентация, добавлен 24.09.2019

  • Нахождение производной как основная задача дифференциального исчисления. Первообразная функция на интервале оси. Рассмотрение свойств неопределенного интеграла. Методы интегрирования в математическом анализе. Подведение функции под дифференциал.

    лекция, добавлен 17.01.2014

  • Анализ идеи системного обобщения понятий математики, в частности теории информации, основанных на теории множеств, заменой понятия множества на содержательное понятие системы. Ее реализация в разработке автоматизированного системно-когнитивного анализа.

    статья, добавлен 25.04.2017

  • Возникновение в России систематической научной работы неразрывно связано с учреждением Академии Наук. Леонард Эйлер и его трактаты: "Введение в анализ бесконечно малых", "Основания дифференциального исчисления" и "Основания интегрального исчисления".

    реферат, добавлен 05.03.2009

  • Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.

    реферат, добавлен 16.01.2018

  • Изучение интегральных представлений Сонина, его аналитических свойств, разложение в ряд цилиндрической функции, рекуррентные соотношения и производящей функции. Функции Ханкеля, Вебера, функции мнимого аргумента, связь между цилиндрическими функциями.

    курсовая работа, добавлен 23.04.2011

  • Решение неопределенных интегралов, проверка дифференцированием. Полный дифференциал функции. Исследование функции на экстремум. Частное решение интегрирования дифференциального уравнения с разделяющимися переменными. Исследование сходимости рядов.

    контрольная работа, добавлен 16.11.2014

  • Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.

    курс лекций, добавлен 22.01.2013

  • Создание Ньютоном и Лейбницем дифференциального и интегрального исчисления. Теория относительности Эйнштейна. Математика квантовой теории как концептуальная база современного естествознания. Формулировка законов природы при помощи математических понятий.

    реферат, добавлен 07.01.2010

  • Нахождение производной или дифференциала функции как основная задача дифференциального исчисления. Свойства неопределенного интеграла. Процесс интегрирования иррациональных выражений, замена переменной интегрирования по частям в определенном интеграле.

    контрольная работа, добавлен 11.05.2012

  • Определение гамма-функции. Интегральное представление, область определения, полюсы. Свойства, непрерывность. Представление Ганкеля через интеграл по петле. Предельная форма Эйлера. Применение гамма-функции в теории вероятностей и математической статистике

    курсовая работа, добавлен 08.06.2017

  • Изучение функций, заданных на множестве графов и принимающих значения из некоторого множества чисел. Определение числа компонент связности графа. Правила раскраски графа и карт. Проблема четырех красок. Нахождение множеств внутренней устойчивости.

    реферат, добавлен 13.11.2015

  • Основы гармонического анализа. Определение периода функции. Простейшие периодические функции. Амплитуда и сдвиг фаз. График сложной периодической функции как результат наложения простых. Гармонические составляющие, гармоники функции и ее сходимость.

    презентация, добавлен 18.09.2013

  • Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.

    доклад, добавлен 02.11.2014

  • Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.

    лекция, добавлен 18.10.2013

  • Алгебраические операции с комплексными числами. История развития представления человека о числах, их прикладное значение в рамках научного познания. Основные действия над комплексными числами. Применение сопряженных чисел и примеры их использования.

    презентация, добавлен 05.12.2016

  • Язык математики и его основные элементы. Функции и операции над ними. Интегральное исчисление и его приложения. Множества, мера и их применения. Математические модели и гуманитарные науки. Проблемы и перспективы современной прикладной математики.

    курс лекций, добавлен 14.08.2015

  • Определение логарифмической функции в математике как функции, обратной показательной. Ее понятие и свойства. Изложение геометрической теории логарифмов. Характеристика графиков, представленных в работе А.И. Маркушевича, на которых представлены логарифмы.

    курсовая работа, добавлен 17.06.2015

  • Понятие и сущность интеграла Лебега как обобщение интеграла Римана на широкий класс функций. Определение и свойства интеграла Лебега: линейность, возможность безотказного перехода к пределу. Сходимость интегралов Лебега от последовательностей функций.

    эссе, добавлен 30.06.2016

  • Использование математики в задачах информационной безопасности. Понятие множества, его применение. Методы принятия решений в неопределенных условиях в основе теории множеств. Примеры применения теории множеств в отрасли программирования и в жизни.

    контрольная работа, добавлен 21.09.2017

  • Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.

    курсовая работа, добавлен 20.10.2010

  • Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.

    реферат, добавлен 30.05.2022

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.