Метод наименьших квадратов

Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.

Подобные документы

  • Вероятностное обоснование МНК (метода наименьших квадратов) как наилучшей оценки. Принцип максимального правдоподобия, регрессия. Метод решения: минимизация невязки с привлечением методов матричного исчисления. Доверительные интервалы для оценок МНК.

    презентация, добавлен 06.08.2015

  • Примеры корреляционной и прямолинейной зависимостей. Линейная регрессия и метод наименьших квадратов. Пояснение к оценке коэффициентов методом наименьших квадратов. Выборочный коэффициент корреляции. Построение модели, описывающей изменения величин.

    практическая работа, добавлен 28.03.2020

  • Развитие методов регуляризации решения систем линейных уравнения (СЛАУ). Предложение модифицированного метода наименьших квадратов решения СЛАУ, в основе которого лежит использование q-дифференцирования. Выполнение задач в математическом пакете Matlab.

    статья, добавлен 27.07.2017

  • Определение понятия "аппроксимация", сущность и особенности метода аппроксимации при анализе, обобщении и использовании эмпирических результатов. Получение эмпирических формул методом наименьших квадратов. Расчёт аппроксимаций экспериментальных данных.

    курсовая работа, добавлен 03.05.2014

  • Рассмотрение метода наименьших квадратов как базового метода оценки неизвестных параметров регрессионных моделей по выборочным данным. Нахождение выборочного уравнения зависимости y от x на основании выборки из четырех наблюдений и построение зависимости.

    контрольная работа, добавлен 27.04.2014

  • Анализ традиционного подхода к задаче обработки временного ряда. Обоснование применения рекуррентного варианта метода наименьших квадратов. Характеристика процедуры реализации рекуррентной обработки измерений для случая, когда они заданы нечетко.

    статья, добавлен 04.02.2017

  • Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.

    презентация, добавлен 20.01.2015

  • Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.

    презентация, добавлен 18.12.2012

  • Распределение температуры вдоль тонкого цилиндрического стержня, помещенного в высокотемпературный поток жидкости или газа путем анализа математической модели. Задача регрессии. Метод наименьших квадратов. Проверка гипотезы об адекватности модели.

    контрольная работа, добавлен 10.06.2011

  • Построение уравнения парной регрессии с помощью программы Excel по данным, описывающим зависимость уровня рентабельности на предприятии от скорости товарооборота. Вычисление коэффициента эластичности и расчет ошибки аппроксимации линейной модели.

    контрольная работа, добавлен 19.10.2016

  • Основные понятия и методы, используемые при обработке экспериментальных исследований. Классификация систематических погрешностей по причине возникновения. Идея метода наименьших квадратов. Случаи линейной, пропорциональной и нелинейной зависимостей.

    учебное пособие, добавлен 11.03.2014

  • Методы получения адекватных моделей для решения управленческих задач. Свойства почв и метеоусловий северной и центральной зон Краснодарского края. Оценка урожайности по методу наименьших квадратов. Моделирование с помощью кусочно-линейной регрессии.

    статья, добавлен 26.04.2017

  • Сущность статистических прогнозов и задачи экономико-статистического прогнозирования. Основные методы прогнозирования в статистике: наименьших квадратов, наименьших квадратов с весами, экспоненциального сглаживания, авторегрессии. Построение прогноза.

    реферат, добавлен 08.05.2011

  • Экономическая интерпретация коэффициента регрессии. Вычисление коэффициента детерминации и средняя относительная ошибка аппроксимации. Вывод о качестве модели. Классификация уравнения не линейной регрессии: гиперболической, степенной, показательной.

    контрольная работа, добавлен 12.01.2015

  • Рассмотрение особенностей исследования остаточных величин. Характеристика основных случаев применения метода Гольдфельда-Квандта. Определение значения отсутствия автокорреляции остатков. Выявление алгоритма проверки регрессии на гетероскедастичность.

    презентация, добавлен 13.07.2015

  • Расчет линейного коэффициента парной корреляции, коэффициента детерминации и ошибки аппроксимации. Определение значимости параметров регрессии с помощью F-критерия Фишера и t-критерия Стьюдента. Скорректированный коэффициент множественной детерминации.

    контрольная работа, добавлен 27.04.2017

  • Случайная величина. Генеральная совокупность и выборка. Результат измерения. Доверительный интервал. Погрешности косвенных измерений. Алгоритм обработки данных косвенных измерений выборочным методом. Задача регрессии и метод наименьших квадратов.

    методичка, добавлен 24.05.2012

  • Характеристика понятия парной регрессии. Неправильный выбор математической функции и недоучет в уравнении регрессии существенного фактора как ошибки спецификации. Использование временной информации и графический метод подбора вида уравнения регрессии.

    лекция, добавлен 25.04.2015

  • Определение параметров для составления линейного уравнения парной регрессии посредствам построения электронной таблицы Excel. Оценка качества построенной модели на основе коэффициента парной корреляции, детерминации и средней ошибки аппроксимации.

    лабораторная работа, добавлен 30.03.2015

  • Построение классической линейной модели множественной регрессии. Анализ матриц коэффициентов корреляции на наличие мультиколлинеарности. Анализ линейной модели парной регрессии с наиболее значимым фактором. Влиянием значимых факторов на результат.

    контрольная работа, добавлен 23.05.2015

  • Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.

    контрольная работа, добавлен 29.03.2013

  • Построение оценки функции регрессии с помощью метода наименьших квадратов. Нахождение значения коэффициента методами трапеций и парабол, решение уравнения. Изучение распределения температуры в тонком цилиндрическом стержне. Решение краевой задачи.

    дипломная работа, добавлен 24.12.2011

  • Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.

    контрольная работа, добавлен 23.05.2021

  • Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.

    контрольная работа, добавлен 19.05.2015

  • Временной ряд и его основные элементы, закономерности автокорреляция уровней и выявление структуры. Моделирование тенденции и метод наименьших квадратов. Приведение уравнения тренда к линейному виду. Аддитивная и мультипликативная модели временного ряда.

    реферат, добавлен 07.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.