Метод наименьших квадратов
Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.
Подобные документы
Вероятностное обоснование МНК (метода наименьших квадратов) как наилучшей оценки. Принцип максимального правдоподобия, регрессия. Метод решения: минимизация невязки с привлечением методов матричного исчисления. Доверительные интервалы для оценок МНК.
презентация, добавлен 06.08.2015Примеры корреляционной и прямолинейной зависимостей. Линейная регрессия и метод наименьших квадратов. Пояснение к оценке коэффициентов методом наименьших квадратов. Выборочный коэффициент корреляции. Построение модели, описывающей изменения величин.
практическая работа, добавлен 28.03.2020Развитие методов регуляризации решения систем линейных уравнения (СЛАУ). Предложение модифицированного метода наименьших квадратов решения СЛАУ, в основе которого лежит использование q-дифференцирования. Выполнение задач в математическом пакете Matlab.
статья, добавлен 27.07.2017Определение понятия "аппроксимация", сущность и особенности метода аппроксимации при анализе, обобщении и использовании эмпирических результатов. Получение эмпирических формул методом наименьших квадратов. Расчёт аппроксимаций экспериментальных данных.
курсовая работа, добавлен 03.05.2014Рассмотрение метода наименьших квадратов как базового метода оценки неизвестных параметров регрессионных моделей по выборочным данным. Нахождение выборочного уравнения зависимости y от x на основании выборки из четырех наблюдений и построение зависимости.
контрольная работа, добавлен 27.04.2014Анализ традиционного подхода к задаче обработки временного ряда. Обоснование применения рекуррентного варианта метода наименьших квадратов. Характеристика процедуры реализации рекуррентной обработки измерений для случая, когда они заданы нечетко.
статья, добавлен 04.02.2017Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.
презентация, добавлен 20.01.2015Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.
презентация, добавлен 18.12.2012Распределение температуры вдоль тонкого цилиндрического стержня, помещенного в высокотемпературный поток жидкости или газа путем анализа математической модели. Задача регрессии. Метод наименьших квадратов. Проверка гипотезы об адекватности модели.
контрольная работа, добавлен 10.06.2011Построение уравнения парной регрессии с помощью программы Excel по данным, описывающим зависимость уровня рентабельности на предприятии от скорости товарооборота. Вычисление коэффициента эластичности и расчет ошибки аппроксимации линейной модели.
контрольная работа, добавлен 19.10.2016Основные понятия и методы, используемые при обработке экспериментальных исследований. Классификация систематических погрешностей по причине возникновения. Идея метода наименьших квадратов. Случаи линейной, пропорциональной и нелинейной зависимостей.
учебное пособие, добавлен 11.03.2014Методы получения адекватных моделей для решения управленческих задач. Свойства почв и метеоусловий северной и центральной зон Краснодарского края. Оценка урожайности по методу наименьших квадратов. Моделирование с помощью кусочно-линейной регрессии.
статья, добавлен 26.04.2017Сущность статистических прогнозов и задачи экономико-статистического прогнозирования. Основные методы прогнозирования в статистике: наименьших квадратов, наименьших квадратов с весами, экспоненциального сглаживания, авторегрессии. Построение прогноза.
реферат, добавлен 08.05.2011Экономическая интерпретация коэффициента регрессии. Вычисление коэффициента детерминации и средняя относительная ошибка аппроксимации. Вывод о качестве модели. Классификация уравнения не линейной регрессии: гиперболической, степенной, показательной.
контрольная работа, добавлен 12.01.2015Рассмотрение особенностей исследования остаточных величин. Характеристика основных случаев применения метода Гольдфельда-Квандта. Определение значения отсутствия автокорреляции остатков. Выявление алгоритма проверки регрессии на гетероскедастичность.
презентация, добавлен 13.07.2015Расчет линейного коэффициента парной корреляции, коэффициента детерминации и ошибки аппроксимации. Определение значимости параметров регрессии с помощью F-критерия Фишера и t-критерия Стьюдента. Скорректированный коэффициент множественной детерминации.
контрольная работа, добавлен 27.04.2017Случайная величина. Генеральная совокупность и выборка. Результат измерения. Доверительный интервал. Погрешности косвенных измерений. Алгоритм обработки данных косвенных измерений выборочным методом. Задача регрессии и метод наименьших квадратов.
методичка, добавлен 24.05.2012Характеристика понятия парной регрессии. Неправильный выбор математической функции и недоучет в уравнении регрессии существенного фактора как ошибки спецификации. Использование временной информации и графический метод подбора вида уравнения регрессии.
лекция, добавлен 25.04.2015Определение параметров для составления линейного уравнения парной регрессии посредствам построения электронной таблицы Excel. Оценка качества построенной модели на основе коэффициента парной корреляции, детерминации и средней ошибки аппроксимации.
лабораторная работа, добавлен 30.03.2015Построение классической линейной модели множественной регрессии. Анализ матриц коэффициентов корреляции на наличие мультиколлинеарности. Анализ линейной модели парной регрессии с наиболее значимым фактором. Влиянием значимых факторов на результат.
контрольная работа, добавлен 23.05.2015Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.
контрольная работа, добавлен 29.03.2013Построение оценки функции регрессии с помощью метода наименьших квадратов. Нахождение значения коэффициента методами трапеций и парабол, решение уравнения. Изучение распределения температуры в тонком цилиндрическом стержне. Решение краевой задачи.
дипломная работа, добавлен 24.12.2011Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.
контрольная работа, добавлен 23.05.2021Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.
контрольная работа, добавлен 19.05.2015Временной ряд и его основные элементы, закономерности автокорреляция уровней и выявление структуры. Моделирование тенденции и метод наименьших квадратов. Приведение уравнения тренда к линейному виду. Аддитивная и мультипликативная модели временного ряда.
реферат, добавлен 07.09.2015