Метод наименьших квадратов

Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.

Подобные документы

  • Основные понятия и определения планирования и организации эксперимента. Метод наименьших квадратов и факторный эксперимент. Дисперсионный анализ и построение теоретической функции методом квадратов. Регрессионная зависимость эксперимента, её анализ.

    курсовая работа, добавлен 27.09.2011

  • Основные понятия математической статистики. Оценка параметров, проверка гипотез и основы регрессионного анализа. Точечное и интегральное оценивание и их эффективность. Критерии согласия и линейная регрессия. Метод наименьших квадратов. Теорема Пирсона.

    курс лекций, добавлен 03.07.2013

  • Сущность и типы уравнения регрессии как формулы статистической связи между переменными. Теоретическая и прямая линии регрессии, проверка адекватности уравнения регрессии. Оценка значимости парного коэффициента корреляции и коэффициент детерминации.

    контрольная работа, добавлен 26.06.2014

  • Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.

    курсовая работа, добавлен 08.06.2013

  • Рассмотрение статистического описания и выборочных характеристик двумерного случайного вектора. Построение диаграммы рассеяния, нанесение на нее уравнения регрессии. Определение качества аппроксимации результатов наблюдений выборочной регрессии.

    курсовая работа, добавлен 13.10.2017

  • Проекционный метод Галеркина, сущность метода коллокаций и наименьших квадратов, их преимущества и недостатки. Решение краевой задачи различными методами. Оценка погрешности применения данных методов относительно точного решения в конкретных точках.

    дипломная работа, добавлен 07.11.2012

  • Эвристическое правило выбора функционального базиса в задаче построения функции регрессии. Выбор из множества возможных базисов такого, который доставляет минимум остаточной сумме квадратов, рассчитанной по проверочной выборке. Примеры эффективности.

    статья, добавлен 27.11.2018

  • Общая характеристика графика модели парной регрессии. Знакомство с наиболее важными этапами расчета коэффициента детерминации. Рассмотрение основных способов построения степенной модели парной регрессии. Особенности проведения корреляционного анализа.

    статья, добавлен 27.12.2020

  • Ознакомление с линейным уравнением множественной регрессии. Определение и характеристика ошибки аппроксимации. Рассмотрение и анализ результатов сравнения коэффициентов частной и парной корреляции. Изучение уравнение степенной и линейной модели.

    контрольная работа, добавлен 09.01.2017

  • Построение линейного уравнения парной регрессии. Анализ верхней и нижней границ доверительных интервалов. Расчёт ошибки прогноза кредитов. Использование критериев Фишера и Стьюдента при оценке статистической значимости параметров регрессии и корреляции.

    контрольная работа, добавлен 09.06.2015

  • Ряды наблюдений и их характеристики. Эмпирические распределения случайной величины. Случайные ошибки измерения и производные. Алгебра линейной регрессии, обозначения и определения. Модель линейной регрессии, формы уравнения и автокорреляция ошибок.

    курс лекций, добавлен 27.10.2015

  • Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. График разности исходной (табличной) и аппроксимирующей функций. Численное решение задачи коши для обыкновенного дифференциального уравнения первого порядка.

    контрольная работа, добавлен 01.04.2015

  • Особенности применения теоремы Лангранжа к подынтегральной функции. Теорема о дифференцировании определенного интеграла по переменному верхнему пределу. Аппроксимация дифференциальной задачи на примере разностной схемы метода наименьших квадратов.

    шпаргалка, добавлен 24.10.2010

  • Характеристика стационарного эргодического случайного процесса. Особенность понятия корреляционной функции. Суть математического ожидания неизменного назначения. Анализ метода наименьших квадратов. Построение графиков для исходного и нового движений.

    курсовая работа, добавлен 16.07.2014

  • Классическое понятие функциональной зависимости в математике, ограничения применимости понятия для адекватного моделирования реальности. Интеллектуальная система "Эйдос". Методы формирования редуцированных когнитивных функций и наименьших квадратов.

    монография, добавлен 13.05.2017

  • Основы статистического метода исследования. Детерминированная теория ошибок и дисперсии искомых оценок. Применение принципа наименьших квадратов в экспериментальной науке. Выведение погрешности наблюдений из распределения среднего арифметического.

    статья, добавлен 22.02.2019

  • Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.

    контрольная работа, добавлен 17.05.2019

  • Математическое моделирование, форма и принципы представления моделей и особенности их представления. Компьютерное моделирование при обработке опытных данных, типы интерполяции. Этапы алгоритма сглаживания опытных данных методом наименьших квадратов.

    курс лекций, добавлен 19.06.2015

  • Поиск выборочных ковариации и коэффициента корреляции. Доверительный интервал для математического ожидания величины. Оценка параметров модели методом наименьших квадратов. Тестирование близости эмпирического распределения остатков моделей к нормальному.

    контрольная работа, добавлен 10.11.2017

  • Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.

    контрольная работа, добавлен 03.06.2009

  • Регрессионный анализ - определение аналитического выражения связи, в котором изменение одной величины обусловлено влиянием одной или несколько независимых величин. Методы выбора математической модели в парной регрессии. Определение остатка для наблюдения.

    реферат, добавлен 11.12.2017

  • Характеристика значимости коэффициентов простой линейной регрессии. Определение t-критерия Стьюдента при заданных параметрах парной регрессии, среднем квадратическом отклонении факторного признака, общей и остаточной дисперсии, количестве узловых точек.

    контрольная работа, добавлен 18.12.2014

  • Разработка рекуррентного алгоритма, позволяющего получать сильно состоятельные оценки параметров многомерных по входу линейных динамических систем при наличии помех наблюдения во входных и выходных сигналах. Оценка эффективности предложенного метода.

    статья, добавлен 31.08.2018

  • Целесообразность использования статистических методов в проблеме поиска оптимальных условий проведения эксперимента. Наука планирования и организации эксперимента. Обработка экспериментальных данных методом наименьших квадратов, регрессионная зависимость.

    дипломная работа, добавлен 10.02.2016

  • Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.

    учебное пособие, добавлен 24.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.