Методика проведения факультативных занятий по математике

Сущность и общая характеристика факультативных занятий по математике, основные формы организации и методы проведения. Содержание факультативного курса “Комплексные числа и их приложения”. Общие методические рекомендации к изучению факультативного курса.

Подобные документы

  • Главный метод математической индукции. Преобразование логарифмических и тригонометрических выражений. Характеристика степени действительного числа и многочленов. Дифференциальное исчисление функции одной переменной. Показательные уравнения и неравенства.

    учебное пособие, добавлен 18.11.2014

  • Математический софизм как удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. Значение решения любого рода математических задач, а в особенности нестандартных. Софизм "Все числа равны между собой".

    статья, добавлен 25.03.2019

  • Изучение общего курса математики студентами вузов. Сочетание необходимого теоретического материала с широким использованием методов решения основных типов задач по всем разделам курса. Изложение точных формулировок понятий, теорем и доказательств.

    учебное пособие, добавлен 16.04.2014

  • Общая характеристика основ современного восприятия человеком музыки и математики. Изучение особенностей ритма, длительности, симметрии, вариации, параллели, противоположности в их музыко-математическом аспекте. Математический анализ гармонии в музыке.

    реферат, добавлен 07.08.2014

  • Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.

    учебное пособие, добавлен 16.06.2015

  • Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.

    лекция, добавлен 09.07.2015

  • Рассмотрение плана проведения семинарских занятий. Анализ алгебраических поверхностей и их классификация. Приведение уравнений поверхностей второго порядка к каноническому виду. Исследование асимптотических направлений, пересечений, касаний, особых точек.

    методичка, добавлен 25.12.2014

  • Изучение связи противоречия с идеей бесконечного числа в математике. Вычисление пределов, асимптотические обозначения в уравнениях и эквивалентные бесконечно малые функции. Использование выражение, содержащее асимптотические равенства теории алгоритмов.

    курсовая работа, добавлен 28.05.2014

  • Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.

    доклад, добавлен 23.04.2013

  • Составление "коллекции" простых чисел способом "решето Эратосфена". Формулирование и возможности разрешения проблемы Гольдбаха-Эйлера. Рассмотрение линейных, плоских и телесных фигурных чисел. История многоугольных и дружественных чисел в математике.

    реферат, добавлен 08.12.2017

  • Характеристика основных положений теории вероятности. Анализ невозможных, возможных и достоверных событий в математике. Классическое определение закономерностей массовых случайных явлений. Сущность принципа разыскания геометрических возможностей.

    реферат, добавлен 17.03.2015

  • Изучение биографических данных о первом математике средневековой Европы Леонардо Пизанском (Фибоначчи). Рассмотрение сущности и особенностей математической последовательности чисел Фибоначчи. Определение геометрического смысла "золотого сечения".

    реферат, добавлен 29.10.2014

  • Характеристика трех наиболее употребительных приближенных способов вычисления определенных интегралов в математике: методов прямоугольников, трапеций, парабол. Использование определенных формул для расчета их по числу значений подынтегральной функции.

    реферат, добавлен 02.09.2013

  • Общая характеристика вариантов построения модели преподавания математики как открытой сложной развивающейся системы. Знакомство с особенностями системно-структурного подхода к преподаванию математики в вузе. Анализ идеей прагматизма в математике.

    статья, добавлен 26.04.2019

  • История Божественной гармонии. Первое упоминание деления отрезка в крайнем и среднем отношении. Применение закона гармонического деления в математике. Способ построения пентаграммы. Использование закономерности и связи золотого сечения и числа Фибоначчи.

    научная работа, добавлен 03.05.2019

  • Сущность и применение методики дополнительных построений. Основные принципы стереометрии и планиметрии. Применение метода площадей, метода объемов в математике. Алгебраический метод определения площади треугольника. Особенности расчета объема тетраэдра.

    презентация, добавлен 09.12.2014

  • Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Понятие функции, способы её задания и исследования. Изображение замкнутых кривых на координатной плоскости. Методика изучения линейной, квадратной и кубической функции.

    методичка, добавлен 30.01.2016

  • Знакомство с особенностями традиционного доказательства теоремы Кантора. Характеристика логической схемы канторовского RAA-доказательства. Рассмотрение примеров применения КП-метода в классической математике. Сущность понятия "математическая интуиция".

    статья, добавлен 27.02.2019

  • Рассмотрение особенностей арифметической и геометрической прогрессий. Таблица значений тригонометрических функций некоторых углов. Характеристика физических основ механики. Изучение законов электростатики. Основы электрического тока в металлах и газе.

    учебное пособие, добавлен 13.01.2014

  • Общие аксиомы конструктивной геометрии. Инструменты геометрических построений. О возможности решения задач одним циркулем. Построение на плоскости одной линейкой. Элементарные задачи, этапы и методы их выполнения. Методические рекомендации по обучению.

    дипломная работа, добавлен 06.03.2014

  • Исторический аспект происхождения дробей в разных странах: Древнем Египте, Греции, Индии, Китае, Риме. Понятия, свойства рациональных и нерациональных чисел. Формирование понятия доли и дроби в вариантных программах обучения математике.

    курсовая работа, добавлен 14.11.2014

  • Теоретические аспекты понятия разности двух множеств как теоретико-множественной операции в математике, особенности пустого множества. Основные свойства разности множеств и сущность законов де Моргана. Реализация операции с помощью компьютерных программ.

    реферат, добавлен 18.02.2012

  • История процента и знака процента. Формулы для решения задач на проценты. Основные типы задач на проценты, методы и примеры их решения. Процент в повседневной жизни. Подборка задач в помощь учащимся 9-ых классов для подготовки к экзамену по математике.

    творческая работа, добавлен 03.05.2019

  • Аксиоматический метод в математике. Конъюнктивная и дизъюнктивная нормальные формы. Построение исчисления высказываний в виде формальной системы. Формализация математических теорий на языке первого порядка. Теорема о полноте. Алгоритмы и машина Тьюринга.

    учебное пособие, добавлен 07.08.2013

  • Скорость решения задачи по математике - условие быстрого усвоения учебного материала, умение быстро анализировать ситуацию достаточно продуктивно. Характеристика основных методик решений возвратных уравнений, которые применяются в школьной практике.

    статья, добавлен 20.07.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.