Интеграл и его применение
История интегрального исчисления и вопросы интегрального исчисления. Вклад физики в науку интегрального исчисления. Дифференциальное и интегральное исчисление и его применение. Определение, свойства интеграла. Криволинейная трапеция, стандартные картинки.
Подобные документы
- 26. Линейная алгебра
Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.
курс лекций, добавлен 22.01.2013 Создание Ньютоном и Лейбницем дифференциального и интегрального исчисления. Теория относительности Эйнштейна. Математика квантовой теории как концептуальная база современного естествознания. Формулировка законов природы при помощи математических понятий.
реферат, добавлен 07.01.2010Изучение сущности определенного интеграла – средства исследования в математике, физике, механике. Определение площади криволинейной трапеции. Ознакомление с функциями определенного интеграла. Рассмотрение геометрического смысла определенного интеграла.
контрольная работа, добавлен 17.01.2015Рассмотрение становления математики как науки. Описание периодов элементарной математики и математики переменных величин. Создание аналитической геометрии, дифференциального и интегрального исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат, добавлен 26.12.2014Численный метод решения интегрального уравнения с ядром, имеющим особенности первого порядка по обеим переменным. Аппроксимация кусочно-линейными функциями. Расчет коэффициентов методом коллокации. Вычисление сингулярных интегралов от базисных функций.
статья, добавлен 13.05.2017Программа дисциплины "Математический анализ". Методические указания по самостоятельной работе, выполнению контрольных работ, подготовке к сдаче экзамена. Основы дифференциального и интегрального исчисления. Теория рядов, функции нескольких переменных.
методичка, добавлен 18.06.2015Изучение дифференциального и интегрального исчисления. Анализ применения Дзета-функции Римана в теории чисел. Определение понятия функции: закона, по которому каждому элементу множества X ставится в соответствие один или несколько элементов множества Y.
курсовая работа, добавлен 30.10.2010Зарождение арифметики и элементарной математики, развитие строительных технологий и геометрии. Создание дифференциального, интегрального исчисления. Изучение основных законов механики. Открытия Пифагора и Ньютона. Развитие математики в современный период.
статья, добавлен 20.07.2018Нахождение производной как основная задача дифференциального исчисления. Первообразная функция на интервале оси. Рассмотрение свойств неопределенного интеграла. Методы интегрирования в математическом анализе. Подведение функции под дифференциал.
лекция, добавлен 17.01.2014Предел последовательности и функции, бесконечно малые и большие величины, а также их сравнение. Дифференциальное и интегральное исчисление функции одной переменной. Геометрические приложения определенного интеграла. Производная и дифференциал функции.
учебное пособие, добавлен 20.08.2017Анализ способа вычисления двойных интегралов путем сведения их к повторному интегралу. Ограничение функции сверху и снизу двумя непрерывными кривыми в области d. Алгоритм исчисления двойного интеграла в прямоугольных координатах и замена его переменных.
презентация, добавлен 17.09.2013Основные понятия операционного исчисления, оригинала и изображения, соответствие между ними. Некоторые свойства преобразования и формула Лапласа. Таблица изображений простейших функций, изображения заданной функции и восстановление оригинала по нему.
лекция, добавлен 29.09.2014Понятие и сущность интеграла Лебега как обобщение интеграла Римана на широкий класс функций. Определение и свойства интеграла Лебега: линейность, возможность безотказного перехода к пределу. Сходимость интегралов Лебега от последовательностей функций.
эссе, добавлен 30.06.2016Математический анализ как совокупность разделов математики, посвящённых исследованию функций и их обобщении методами дифференциального и интегрального исчисления. Использование математических методов в сфере управления, решение экономических задач.
эссе, добавлен 24.08.2013Свойства неопределенного интеграла. Применение метода подстановки для различных типов функций. Разложение интегральной функции. Формула понижения степени для интеграла. Интегрирование иррациональных функций. Подстановки Эйлера. Дифференциальные биномы.
контрольная работа, добавлен 22.12.2015Рассмотрение возрастающих и убывающих функций, особенностей поведения функций в точке. Определение функции, непрерывной в каждой точке. Применение понятия предела функции в экономических расчетах. Свойства производной, производные высших порядков.
реферат, добавлен 13.06.2015Задачи об оптимизации объекта управления в динамике. Общая задача Лагранжа, ее значение. Условие стационарности функционала, выраженное уравнениями Эйлера-Лагранжа. Расчет оптимального управления классическим методом вариационного исчисления уравнения.
контрольная работа, добавлен 22.07.2015Достижения Ньютона в математике: нахождение путем общего разложения бинома с произвольным показателем степени, разработка метода флюксий для анализа бесконечно малых величин. Изложение в журнале "Труды ученых" Лейбницем основ дифференциального исчисления.
реферат, добавлен 30.06.2011- 44. Функция
Развитие понятия функции. Математический анализ и его две основные части: дифференциальное и интегральное исчисления. Определение функции и графика функции. Область определения и область значений функции. Виды функций: четные, нечетные, периодические.
реферат, добавлен 16.05.2012 Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.
контрольная работа, добавлен 18.12.2013Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.
методичка, добавлен 27.10.2013- 47. Интеграл Лебега
Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.
курсовая работа, добавлен 20.10.2010 Дифференциальное и интегральное исчисления. Основные типы матриц. Миноры и алгебраические дополнения. Союзная и обратная матрицы. Правило Крамера для решения линейных уравнений. Билинейная и квадратичная форма. Собственные числа и линейное пространство.
реферат, добавлен 02.06.2021Сущность бесконечнозначной предикатной логики, имеющей связку (нечеткое неравенство), близкой к импликации Лукасевича. Анализ ряда свойств секвенциального исчисления, в том числе свойств, служащих основой для процедур автоматического поиска доказательств.
статья, добавлен 17.01.2018Оценка основных понятий функциональной зависимости. Дифференциальное исчисление функций одной переменной. Характеристика неопределенных интегралов, исследование функций. Понятие кратного интеграла. Определение особенностей дифференциальных уравнений.
курс лекций, добавлен 20.08.2017