Определенный интеграл

Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.

Подобные документы

  • Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.

    курс лекций, добавлен 22.01.2013

  • Графическая иллюстрация метода трапеции. Примеры использования метода трапеций для приближенного вычисления определенных интегралов. Промежуточные вычисления для определения значения определенного интеграла. Вычисления интегралов Delphi методом трапеций.

    курсовая работа, добавлен 27.11.2018

  • Сущность и основные теоремы дифференциального исчисления, их главные отличия. Процесс построения графика. Описание теоремы Вейерштрасса и Лагранжа, их использование. Обобщенная формула конечных приращений. Раскрытие неопределенностей и правила Лопиталя.

    лекция, добавлен 29.09.2013

  • Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).

    лабораторная работа, добавлен 25.11.2014

  • Понятие первообразной от функции. Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Задачи о нахождении площади плоской фигуры. Несобственный интеграл.

    лекция, добавлен 12.04.2012

  • Понятие и общая характеристика неопределенного интеграла, его основные свойства и функции. Сущность и особенности рациональной дроби, порядок и принципы ее интегрирования. Сходимость несобственных интегралов II рода. Изучение дифференциальных уравнений.

    лекция, добавлен 02.05.2012

  • Понятие интеграла Лебега от ограниченной функции как обобщения интеграла Римана на более широкий класс функций, его характеристика и свойства, направления исследования и анализа, история построения. Класс интегрируемых по Лебегу ограниченных функций.

    реферат, добавлен 09.04.2013

  • Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Нахождение площади плоской фигуры. Существование определённого интеграла. Дифференциальные уравнения.

    контрольная работа, добавлен 30.01.2012

  • Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.

    контрольная работа, добавлен 03.06.2012

  • Сущность и геометрический смысл двойного интеграла. Понятие и принципы построения цилиндрического бруса, порядок и этапы вычисления его фактического объема. Методика и основные этапы определения внутреннего интеграла и анализ полученных результатов.

    практическая работа, добавлен 18.10.2013

  • Понятие криволинейного интеграла, его функции и свойства. Три интегральных суммы криволинейного интеграла первого и второго рода, их взаимосвязь. Вычисление перемещения материальной точки вдоль кривой. Теорема существования криволинейного интеграла.

    реферат, добавлен 20.10.2014

  • Характеристика предела интегральной суммы функции, когда число частичных отрезков неограниченно возрастает, а длина наибольшего из них стремится к нулю. Рассмотрение алгоритма вычисления определённого интеграла. Последствия замены переменной в интеграле.

    задача, добавлен 22.04.2015

  • Определение понятия интеграла. Ознакомление с историей появления новой ветви математики - интегрального исчисления. Рассмотрение особенностей отыскивания функций по их производным. Особенности понятий бесконечности, движения и функциональной зависимости.

    презентация, добавлен 11.05.2016

  • Получена оценка меры иррациональности числа log2. Доказательство леммы, позволяющей получить представление интеграла в виде линейной формы от 1 и log2 с коэффициентами из К. Определение подынтегральной функции интеграла. Применение теоремы Лапласа.

    статья, добавлен 27.05.2018

  • Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.

    методичка, добавлен 14.12.2016

  • Определение и условие существования определенного интеграла, геометрические приложения: длина дуги, объем тела, площадь поверхности. Физические приложения: работа переменной силы, давление жидкости; статические моменты и координаты центра тяжести.

    контрольная работа, добавлен 12.06.2012

  • Алгоритм вычисления интеграла с заданной точностью. Формулы левых, правых и средних прямоугольников. Составная функция трапеции. Квадратурные формулы Ньютона-Котеса. Принцип Рунге практического оценивания погрешностей. Расчеты в малом и в целом.

    презентация, добавлен 30.10.2013

  • Особенности применения метода дополнительного аргумента для вычисления необходимых коэффициентов характеристической системы. Методика доказательства существования решения задачи Коши. Площадь криволинейной трапеции как физический смысл интеграла.

    дипломная работа, добавлен 01.10.2017

  • Решение граничных задач. Определение числового ряда. Основные свойства числовых рядов. Признаки сходимости Лейбница. Ряды с положительными членами. Знакочередующиеся и знакопеременные ряды. Числовые и функциональные ряды. Ряды и интеграл Фурье.

    курсовая работа, добавлен 03.07.2014

  • Особенности применения теоремы Лангранжа к подынтегральной функции. Теорема о дифференцировании определенного интеграла по переменному верхнему пределу. Аппроксимация дифференциальной задачи на примере разностной схемы метода наименьших квадратов.

    шпаргалка, добавлен 24.10.2010

  • Понятие о натуральных, комплексных и иррациональных числах. Правила математического доказательства теорем. Принципы исчисления дифференциала и производной функции. Приведение формулы Ньютона-Лейбница. Расчет криволинейного и поверхностного интегралов.

    конспект урока, добавлен 07.12.2011

  • Установление точек разрыва функции, составление уравнения асимптот. Поиск координат вершины параболы. Определение условий существования экстремума в стационарной точке. Поиск интеграла по формуле Ньютона-Лейбница. Решение дифференциального уравнения.

    контрольная работа, добавлен 25.03.2014

  • Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.

    контрольная работа, добавлен 13.10.2013

  • Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).

    учебное пособие, добавлен 28.12.2013

  • Определение площади плоской фигуры, объема тел вращения, образованных при вращении вокруг оси, с помощью определенного интеграла. Понятие несобственного интеграла с бесконечными пределами интегрирования, несобственные интегралы от разрывных функций.

    лекция, добавлен 09.04.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.