Определенный интеграл

Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.

Подобные документы

  • Вычисление площади плоской фигуры с применением определенного интеграла. Определение объема тела вращения при помощи геометрических расчетов. Понятие и признаки несобственного интеграла. Несобственные интегралы с бесконечными пределами интегрирования.

    лекция, добавлен 03.04.2019

  • Определенные и неопределенные интегралы функций и их свойства. Метод непосредственного интегрирования. Интегрирование элементарных и рациональных дробей, биноминальных дифференциалов. Универсальная тригонометрическая подстановка. Теорема Ньютона-Лейбница.

    курс лекций, добавлен 05.03.2016

  • Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.

    контрольная работа, добавлен 30.10.2010

  • Определение свойств неопределенного интеграла. Рассмотрение таблицы основных неопределенных интегралов. Характеристика методов интегрирования тригонометрических и гиперболических функций: замены переменной, подстановки и интегрирования по частям.

    презентация, добавлен 26.09.2017

  • Интегральное и дифференциальное исчисления функций одной переменной. Числовые множества. Предел и непрерывность функций. Производная и дифференциал. Кривизна и кручение кривой. Интегрирование рациональных дробей. Критерий Коши собственного интеграла.

    учебное пособие, добавлен 31.03.2016

  • Понятие дифференцируемости на замкнутой области. Анализ пространства Соболева в теоретических и прикладных вопросах математической физики и функционального анализа. Обзор теоремы о пополнении интеграла Лебега. Множество метрического пространства.

    реферат, добавлен 02.07.2013

  • Рассмотрение функций частных производных. Двойной интеграл в криволинейных координатах. Переход от декартовой системы оси к оси на плоскости. Изучение понятий, свойств и полярных координат двойного и тройного интеграла. Положение точек в пространстве.

    лекция, добавлен 17.01.2014

  • Понятие определенного, двойного и тройного интегралов. Характеристика теорем существования двойного и тройного интегралов. Сущность теоремы о среднем значении для двойного интеграла. Условия перехода пределов интегрирования к полярным координатам.

    контрольная работа, добавлен 27.08.2013

  • Задачи, приводящие к понятию определенного интеграла, сфера его применения и геометрический смысл. Вычисление площади плоской фигуры. Объёмы тел вращения. Характеристика кривых, встречаются при вычислении определенного интеграла. Исчисление длины дуги.

    дипломная работа, добавлен 14.05.2011

  • Ознакомление с биографией Готфрида Вильгельма Лейбница. Изучение математических работ Лейбница. Характеристика сущности теоремы трансмутации - общего приема преобразования интеграла, основанного на идее перехода от декартовых координат к полярным.

    реферат, добавлен 24.11.2014

  • Связь между поверхностными интегралами первого и второго рода, свойства поверхностного интеграла второго рода и формулы Остроградского-Гаусса и Стокса. Поток векторного поля. Физическое приложение поверхностного интеграла как потока векторного поля.

    контрольная работа, добавлен 23.04.2011

  • Вычисление значения определенных интегралов численно методами прямоугольников, трапеций, Симпсона, квадратур Гаусса-Лежандра, Монте-Карло. Изучение методов интегрирования и написание программы для нахождения значения интеграла разными методами.

    практическая работа, добавлен 02.06.2017

  • Исследование преобразований интеграла и анализ его групповой структуры. Задача Л. Эйлера как одна из классических задач теории трансцендентных чисел. Проблема оценки интеграла, а также меры иррациональности значений дзета-функции Римана в целых точках.

    статья, добавлен 27.05.2018

  • Понятие криволинейного интеграла второго рода, условие его существования. Условия независимости криволинейного интеграла второго рода от пути интегрирования. Механический смысл криволинейного интеграла второго рода, его место в многосвязной области.

    курсовая работа, добавлен 27.11.2018

  • По плану исследовать функцию и построить её график: область определения, точки разрыва, корни уравнения, точки перегиба. Решить систему методом Гаусса: расширенная матрица. Вычислите площадь фигуры, ограниченной графиками функций. Вычислите интеграл.

    задача, добавлен 03.05.2009

  • Определенные и несобственные интегралы. Несобственные интегралы первого и второго рода. Критерий Коши сходимости несобственного интеграла. Абсолютно и условно сходящиеся несобственные интегралы. Признаки сходимости и расходимости. Эталонные интегралы.

    реферат, добавлен 21.08.2008

  • Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.

    курс лекций, добавлен 23.10.2013

  • Суть понятия "дивергенция векторного поля", ее свойства, координатное и инвариантное определение. Скалярные и векторные поля. Применение Теоремы Остроградского-Гаусса для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.

    реферат, добавлен 23.01.2022

  • Понятие двойного интеграла, условия его существования, свойства и методы вычисления. Теорема о среднем. Вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Интегрирование функции в области d.

    презентация, добавлен 17.09.2013

  • Главная особенность исследования теоремы Бернулли. Построение графика распределения вероятностей. Основной анализ определения полиномиальной схемы. Характеристика гипергеометрических испытаний. Изучение интегральной приближенной формулы Муавра-Лапласа.

    презентация, добавлен 25.09.2017

  • Свойства интеграла от функции комплексной переменной. Вывод формулы Коши. Разложение функции в ряды. Классификация изолированных особых точек, теорема о вычетах. Операционное исчисление и его приложения. Связь между преобразованиями Фурье и Лапласа.

    лекция, добавлен 18.05.2010

  • Характеристика основных правил вычисления площади поверхности. Определение площади куска касательной плоскости. Порядок расчета поверхностного интеграла II-го рода. Составление уравнения направляющей цилиндра и вычисление площади части поверхности.

    лекция, добавлен 17.01.2014

  • Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.

    методичка, добавлен 07.10.2015

  • Нахождение длинны стороны, внутреннего угла, точки пересечения высот. Уравнение медианы, проведенной через вершину. Система линейных неравенств. Понятие функции и её график. Координаты вектора в базисе. Производная функции и неопределённый интеграл.

    контрольная работа, добавлен 16.12.2012

  • Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.

    презентация, добавлен 24.09.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.