Методы аппроксимации функций
Аппроксимация, при которой приближение строится на заданном дискретном множестве точек. Интерполяционный полином Лагранжа в виде разложения. Получение интерполяционного многочлена функции. Оценка погрешности остаточного члена при вычислении логарифма.
Подобные документы
Рассмотрение пространства функционалов для аппроксимации нелинейной системы кусочно-линейным способом, ортогональными и степенными полиномами. Определение ядер дискретного функционального полинома. Изучение математической постановки задачи интерполяции.
реферат, добавлен 22.02.2012- 52. Бином Ньютона
Цель изучения бинома Ньютона – упрощение вычислительных действий. Биномиальные коэффициенты и их получение с помощью треугольника Паскаля (пользуясь операцией сложения). Сумма показателей степеней a и b каждого члена разложения. Бином в общем виде.
презентация, добавлен 11.05.2016 Рассмотрение задачи приближения периодических функций составными двухточечными многочленами Эрмита, представление этих многочленов, использующих значения функции и ее производных в точке. Связь двухточечных многочленов Эрмита и многочлена Тейлора.
статья, добавлен 12.08.2020Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.
статья, добавлен 27.06.2016Определение порядка аппроксимации конечно-разностных уравнений. Способы повышения порядка аппроксимации, анализ устойчивости численного решения. Конкретные условия существования устойчивого численного решения. Методы уменьшения невязки и фиктивных узлов.
дипломная работа, добавлен 04.07.2018Симметрические многочлены - системы уравнений, в которые x и y входят одинаковым образом. Важнейшие примеры симметрических многочленов. Представление симметрического многочлена от x и y в виде многочлена от а = х + у и а = ху: доказательство теоремы.
курсовая работа, добавлен 12.02.2012Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.
курс лекций, добавлен 26.09.2017Получение двусторонних поточечных оценок функции Лебега сумм Фурье по рассматриваемой системе. Доказательство точности данного неравенства в случае приближения функций. Построение примера функции заданного класса в случае обобщенного веса Якоби.
автореферат, добавлен 10.12.2013- 59. Матричный анализ
Алгоритм определения функции от матриц, их значения на спектре, свойства и доказательства. Построение интерполяционного многочлена Ланганжа-Сильвестра. Теорема Фробениуса-Перона. Анализ эрмитовых и квадратичных матриц. Спектральное разложение функции.
реферат, добавлен 30.10.2010 Проблема анализа погрешности приближенных вычислений логарифмической функции по формуле Маклорена. Визуализация особенностей расположения графика логарифмической функции относительно выбранного полинома, составленного по формуле; погрешности вычислений.
статья, добавлен 11.03.2018Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.
контрольная работа, добавлен 12.12.2012- 62. Теория функций
Представление аналитической функции в заданном виде. Нахождение значения производной в заданной точке. Разложение функции в ряд Лорана в окрестности точки. Определение области сходимости ряда и вычисление интеграла по контуру при помощи вычетов.
контрольная работа, добавлен 20.12.2013 Непрерывность функции в точке и на множестве. Точки разрыва функции и их классификация. Действия над непрерывными функциями. Непрерывность основных элементарных функций. Свойства функций, непрерывных на отрезке, равномерная непрерывность функции.
лекция, добавлен 10.02.2016Определение абсолютной и относительной погрешности численного результата. Решение уравнений с одной неизвестной. Понятие кратного корня. Методы уточнения корней простой итерации. Решение систем линейных уравнений. Особенности интерполяции функций.
курс лекций, добавлен 08.02.2015Описание алгебраических и тригонометрических многочленов на некотором интервале. Формулирование для них теоремы Чебышева об аппроксимации функций. Рассмотрение произвольной, непрерывной на [a,b] вещественной функции и обобщенной теоремы Валле-Пуссена.
реферат, добавлен 06.05.2014Методика построения аппроксимирующей функции, которая наилучшим образом сглаживает экспериментальную зависимость, заданной таблично. Замена громоздкого табличного способа представления данных эксперимента как одна из важнейших задач аппроксимации.
лабораторная работа, добавлен 05.09.2022Алгоритм обобщения итерационно-интерполяционного метода (ИИМ) для решения трехмерного волнового уравнения. Постановка задачи и метод построения разностной схемы. Устойчивость схемы ИИМ по начальным данным. Сходимость и примеры применения метода.
статья, добавлен 04.05.2016Аппроксимация кривых разгона передаточными функциями более высокого порядка (способ Шварца). Нахождение передаточной функции объекта методом М.П. Симою. Определение подобных связей объектов регулирования по кривым разгона способом площадей и Ротача.
контрольная работа, добавлен 05.11.2011- 69. О функции Эйлера
Значение функции Эйлера в теории чисел и математике. Доказывание формулы Мертинга и изучение, на ее основе, точности аппроксимации среднего значения функции Эйлера соответствующим квадратичным полиномом. Понятие плотности значений функции Эйлера.
статья, добавлен 26.05.2017 Результаты сравнительного анализа погрешностей аппроксимации функции распределения непрерывной случайной величины с ограниченной областью, вычисляемого методом Розенблатта-Парзена. Целесообразность использования в данной задаче метода мнимых источников.
статья, добавлен 12.05.2017Определение понятия "аппроксимация", сущность и особенности метода аппроксимации при анализе, обобщении и использовании эмпирических результатов. Получение эмпирических формул методом наименьших квадратов. Расчёт аппроксимаций экспериментальных данных.
курсовая работа, добавлен 03.05.2014Результаты формирования теоретических основ использования модифицированных функций Лагранжа, развитых в численных методах оптимизации, для учета дополнительных голономных связей в механических системах. Параметры модифицированных функций Лагранжа.
статья, добавлен 26.04.2019Метод множителей Лагранжа позволяет отыскивать максимум или минимум функции при ограничениях-равенствах. Безусловный и условный экстремумы в задаче Лагранжа. Применение неопределенных множителей Лагранжа сводит задачу оптимизации с ограничениями к задаче.
курсовая работа, добавлен 20.01.2009Рассмотрение задачи аппроксимации оценки индекса устойчивости альфа-устойчивых распределений, получаемой с помощью метода дробных моментов. Численное моделирование дробно-линейной функции, аппроксимирующей исходную оценку с требуемой точностью.
статья, добавлен 29.01.2016Преобразование целых выражений. Понятие многочлена как суммы одночленов. Правило умножения многочлена на многочлен. Формулы квадрата суммы и разности, разности квадратов, куба суммы и разности. Представление в виде многочлена, разложение его на множители.
презентация, добавлен 19.12.2013