Методы аппроксимации функций
Аппроксимация, при которой приближение строится на заданном дискретном множестве точек. Интерполяционный полином Лагранжа в виде разложения. Получение интерполяционного многочлена функции. Оценка погрешности остаточного члена при вычислении логарифма.
Подобные документы
Интерполяция как процесс нахождения многочлена не выше n-ой степени, ее содержание и предъявляемые требования, основные этапы и значение. Особенности интерполяционной формулы Лагранжа и Ньютона. Остаточный член интерполяции, методика его нахождения.
лекция, добавлен 08.09.2013Состав системы уравнений для определения коэффициентов многочленов наилучшего среднеквадратичного приближения. Таблица значений многочленов наилучшего среднеквадратичного приближения. Графики аппроксимируемой функции, заданной на дискретном множестве.
лабораторная работа, добавлен 09.12.2019Определение сущности семиинвариантов (кумулянт), которые представляют собой коэффициенты разложения в ряд Тейлора логарифма характеристической функции. Характеристика особенностей биномиальной модели. Рассмотрение свойств ортогональных многочленов.
дипломная работа, добавлен 21.06.2016Описание интерполирования методом Лагранжа. Интерполяционная формула Ньютона. Характеристика пользовательского интерфейса программной реализации рассматриваемых методов. Алгоритм вывода графика проинтерполированной функции. Информация о программе.
контрольная работа, добавлен 23.04.2011- 80. Булевы функции
Понятие существенной и фиктивной переменной простых булевых функции функций. Суперпозиции и теория множеств. Нормальные формы и полиномы. Определение и характеристика классов Поста. Минимизация нормальных форм всюду определённых булевых функций.
курсовая работа, добавлен 05.12.2012 Преимущества, характеристика и специфика метода Монте-Карло, его применение в нанотехнологиях и в вычислении интегралов. Способ усреднения подынтегральной функции, оценка погрешности метода Монте-Карло и решение интегральных уравнений второго рода.
курсовая работа, добавлен 02.05.2015Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.
презентация, добавлен 26.09.2017Рассмотрение математической модели АСК-анализа как варианта общего и универсального практического решения проблемы разработки базисных функций и весовых коэффициентов для разложения в ряд по ним произвольной функции состояния идентифицируемого объекта.
статья, добавлен 09.11.2020Исследование периодической функции, ее разложение в ряд Фурье. Вычисление значений тригонометрических полиномов в заданных точках. Построение графика многочлена третьей и восьмой степени. Определение погрешностей и расчет среднеквадратичных коэффициентов.
задача, добавлен 23.11.2016Разработка математической модели объекта в виде дифференциальных уравнений и систем, цели и методы данного процесса. Получение передаточных функций объекта по заданным динамическим каналам исследуемого объекта. Расчет основных коэффициентов функции.
курсовая работа, добавлен 24.03.2013Решение уравнения и построение его на комплексной плоскости. Определение точек разрыва функции и указание характера точек разрыва. Нахождение производных функций. Расчет экстремумов функции с использованием второй производной. Разложение функции в ряд.
контрольная работа, добавлен 22.04.2018Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.
статья, добавлен 09.05.2021- 88. Численные методы
Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.
учебное пособие, добавлен 22.05.2014 Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.
презентация, добавлен 22.03.2021Обоснование непрерывность элементарных функций для точки, у которой малые изменения аргумента приводят к малым изменениям математического значения. Анализ формулы гиперболических значений. Обзор сложной и обратной функций, а так же точек их разрыва.
лекция, добавлен 29.09.2013Строение процессов исходя из тригонометрических интерполяционных полиномов по узлам Чебышева. Исследование приближенного представления функций. Зависимость выбора систем интерполяции от того, насколько точно многочлен будет являться ее приближением.
контрольная работа, добавлен 09.06.2016Задачи, приводящие к понятию производной. Исследование уравнения неравномерного прямолинейного движения, определенного на заданном множестве. Определение тангенса угла наклона касательной к графику функции в точке с абсциссой, расчет производной.
лекция, добавлен 11.12.2014Понятие числовой функции. Определение числовой последовательности как числовой функции на множестве натуральных чисел. Исследование функций на четность и нечетность. Поиск нулей и промежутков, понятие метода интервалов. Промежутки возрастания функции.
лекция, добавлен 27.04.2017Анализ интерполяции функций, построение по заданной функции другой, значения которой совпадают со значениями заданной функции в некотором числе точек. Применение методов вычислительной математики для исследования результатов химического эксперимента.
курсовая работа, добавлен 07.05.2020Свойства производственных функций и функций затрат. Эластичность как локальная характеристика, изменение ее значений. Обсуждение затрат длительного периода, использование функции Лагранжа. Полная эластичность линейно-однородной производственной функции.
лекция, добавлен 30.01.2017- 96. Аппроксимация экспериментальных распределений случайных чисел стандартными статистическими законами
Метод моментов аппроксимации экспериментальных распределений стандартными статистическими законами. Схема эмпирической и гипотетической функции распределения. Метод моментов для экспоненциального закона. Функция плотности экспоненциального закона.
лекция, добавлен 23.09.2017 Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.
курсовая работа, добавлен 29.05.2015Уравнение различного вида как основа математических моделей многих процессов и явлений в физике, химии, биологии, экономике и других областях. Вычисление приближенных значений функции при любом значении аргумента. Необходимость аппроксимации функции.
контрольная работа, добавлен 11.02.2018- 99. Ряд Фурье
Теория многочисленной аппроксимации для периодических функций рядами Фурье. Явление Гиббса на примере прямоугольной волны. Фильтрация зашумленного сигнала с помощью быстрых преобразований Фурье. Преобразование сигнала из временной области в частотную.
доклад, добавлен 09.12.2008 Алгоритм построения интерполяционного кубического сплайна. Разработка программы для интерполяции функции sinx на промежутке [0;П] при равномерном разбиении с удвоением числа отрезков n. Расчет максимальной погрешности, коэффициента ее уменьшения.
курсовая работа, добавлен 23.04.2011