Приближение переменных динамических объектов управления на основе полиномиальных сплайн-функций

Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.

Подобные документы

  • Особенность модификации метода выделения переменных, уменьшающая сложность получаемых промежуточных форм за счет реализации выделения группы переменных последовательностью шагов, называемых циклами. Проведение исследования получения пустого множества.

    статья, добавлен 07.11.2018

  • Роль интерполяции функций в вычислительной математике. Построение таблично заданных функций, которые совпадают со значениями исходной функции в некотором числе точек. Алгоритм построения интерполяции с помощью интерполяционного полинома Лагранжа.

    контрольная работа, добавлен 03.06.2015

  • Понятие и свойства неопределенного интеграла. Замена переменных. Интегрирование рациональных функций. Метод рационализации. Сущность метода интегрирования по частям. Таблица простейших неопределенных интегралов. Упрощение подынтегральной функции.

    реферат, добавлен 17.01.2011

  • Применение логико-комбинаторного подхода в решении многокритериальных задач структурного синтеза. Построение систем логических уравнений на уровне базовых функций и экземпляров базовых функций. Алгоритм минимизации решений с аддитивными показателями.

    статья, добавлен 30.04.2018

  • Решение системы дифференциальных уравнений 8-го порядка. Случай переменных коэффициентов. Формула для вычисления вектора частного решения. Перенос краевых условий в произвольную точку интервала интегрирования. Счет методом прогонки С.К. Годунова.

    курсовая работа, добавлен 25.03.2010

  • Геометрический смысл интегральной суммы. Свойства верхних и нижних сумм. Лемма Дарбу. Необходимое и достаточное условие интегрируемости. Сущность равномерно непрерывных функций. Объемы тел вращения. Правила интегрирования. Формула прямоугольников.

    реферат, добавлен 17.01.2011

  • Пример решения одной из основных канонических задач синтеза дискретных устройств, а именно, построения их с минимальным использованием логических элементов, которые выполняют функции формирования значений входных переменных и реализацию элементарных ФАЛ.

    лекция, добавлен 15.11.2017

  • Определение несобственного интеграла по неограниченному промежутку. Формула Ньютона-Лейбница для интегралов первого рода. Признаки сравнения Абеляра и Дирихле для функций. Особенность на левом конце промежутка интегрирования. Простейшие теоремы.

    курсовая работа, добавлен 09.10.2014

  • Понятие качества, методы его оценки на основе измерений свойств объекта и на основе коэффициентов "трудности". Операционные основы построения производственно-квалитативных функций. Основная формула теории управления с обратной связью и ее приложения.

    методичка, добавлен 10.05.2015

  • Анализ линейно независимых функций, основные условия выполнения интерполяции для поиска многочлена, оценка возможной погрешности. Сущность методов Лагранжа и Ньютона, понятие интерполяционного полинома. Квадратическая зависимость аппроксимирующей функции.

    лабораторная работа, добавлен 20.05.2015

  • Задачи численного интегрирования. Вычисление производной заданной функции, интерполяционного многочлена Ньютона. Решение дифференциальных уравнений. Вычисление приближенных значений интеграла методом треугольников, методом трапеций и методом Симпсона.

    контрольная работа, добавлен 23.12.2017

  • Рассмотрение задачи точного терминального управления для дискретных систем на основе метода штрафных функций. Доказательство равномерной сходимости траекторий и управлений "штрафной" и "вырожденной" задач при неограниченном увеличении коэффициента штрафа.

    контрольная работа, добавлен 26.02.2013

  • Использование стратегий, концепций, методов и механизмов эволюционного моделирования на основе бионического поиска при решении задач об экстремальных путях. Эффективность бионических алгоритмов при решении трудоемких задач оптимизации и аппроксимации.

    статья, добавлен 30.05.2017

  • Двойной интеграл, его свойства. Алгоритм метода интегральной суммы. Задача о вычислении объема цилиндрического бруса. Вычисление площади круга и леминискаты. Вид уравнения поверхности. Цилиндрические и сферические координаты. Пределы интегрирования.

    лекция, добавлен 18.10.2013

  • Булевы переменные: действительные и фиктивные. Сокращение или расширение количества переменных для логических функций удалением или введением фиктивных. Составление комбинационной таблицы. Числа с плавающей запятой. Функционирование системы управления.

    контрольная работа, добавлен 22.10.2013

  • Численное решение системы дифференциальных уравнений. Рассмотрение сущности задачи Коши, краевых задач и задач на собственные значения. Интерполяция многочленом Ньютона с разделенными разностями. Условная минимизация функций нескольких переменных.

    курсовая работа, добавлен 22.02.2019

  • Методы исследования предела и производной функции, построения графиков. Вычисление неопределенных интегралов, методы интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных. Решение дифференциальных уравнений.

    контрольная работа, добавлен 30.03.2015

  • Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. График разности исходной (табличной) и аппроксимирующей функций. Численное решение задачи коши для обыкновенного дифференциального уравнения первого порядка.

    контрольная работа, добавлен 01.04.2015

  • Ознакомление с методами решения основных задач математической статистики с использованием критерия согласия Пирсона. Изучение характеристических функций, которые используются в дальнейшем в теории математической статистики и теории вероятностей.

    курсовая работа, добавлен 21.04.2015

  • Полное исследование функции и построение ее графика с использованием дифференциального исчисления. Расчет неопределенных интегралов с использованием методов интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных.

    контрольная работа, добавлен 16.01.2015

  • Исчисление функций одной и нескольких переменных, его виды (дифференциальное, интегральное): правило Лопиталя, схема исследования функции и построения ее графика, скалярное поле, неопределенный интеграл. Кратные интегралы. Элементы теории векторных полей.

    контрольная работа, добавлен 17.06.2014

  • Анализ последовательности числа с общим членом, согласно формуле суммы бесконечно убывающей геометрической последовательности. Понятие функций одной переменной некоторых числовых множеств. Виды элементарных функций и их геометрическое содержание.

    лекция, добавлен 29.09.2013

  • Описание метода нахождения корня (нуля) заданной функции касательных. Исследование особенностей интерполяционного полинома Ньютона. Рассмотрение общих положений численного интегрирования. Характеристика случаев применения метода прямоугольников.

    реферат, добавлен 08.08.2015

  • Определение порядка аппроксимации конечно-разностных уравнений. Способы повышения порядка аппроксимации, анализ устойчивости численного решения. Конкретные условия существования устойчивого численного решения. Методы уменьшения невязки и фиктивных узлов.

    дипломная работа, добавлен 04.07.2018

  • Разработка новых методов аппроксимации широкого класса функций - локально липпшцевых функций, построение на их основе новых методов оптимизации негладких гладких функций, к которым неприменимы условия сходимости оптимизационных процессов высокого порядка.

    автореферат, добавлен 21.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.