Приближение переменных динамических объектов управления на основе полиномиальных сплайн-функций
Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.
Подобные документы
Порядковая логика – математический аппарат, широко применяемый при решении многих задач обработки, преобразования непрерывной информации. Рекуррентные соотношения для математической модели систолического алгоритма реализации функций порядковой логики.
статья, добавлен 22.08.2020Основные комбинаторные формулы. Решение задач комбинаторики средствами MS Excel. Использование встроенных функций MS Excel для вычисления перестановок, сочетаний, размещений. Основные понятия и правила комбинаторики. Свойства биномиальных коэффициентов.
методичка, добавлен 17.02.2014Описание функций одной и многих переменных, исследование задач на максимум и минимум - локальных свойств функции. Использование высших производных. Необходимые условия и достаточные дифференциальные признаки экстремума. Понятие условного экстремума.
курсовая работа, добавлен 08.09.2010Изучение направлений при проектировании дискретных преобразователей. Исследование булевых функций от четырех аргументов, их минимизация и оценка сложности. Решение задач, построение библиотеки близких формул для булевых функций от четырех аргументов.
статья, добавлен 28.01.2019Понятие и задача интегрирования. Свойства неопределённых интегралов как следствие соответствующих свойств для производных. Правило замены переменных в интеграле, вычисление неопределенных интегралов. Метод вычисления интегралов от рациональных функций.
лекция, добавлен 10.04.2016- 81. Булевы функции
Существенная и фиктивная переменная функции. Наборы значений, которые принимают переменные. Функция, полученная с помощью подстановок функций друг в друга на места переменных, а также с помощью переименования этих переменных. Выражение суперпозиции.
контрольная работа, добавлен 24.09.2012 Идентичность методов решения задач идентификации, возникающих при оценке результатов испытаний сложных динамических систем и задач теории оптимального управления. Математические модели объекта измерений. Идентификация состояния динамической системы.
статья, добавлен 27.05.2018Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.
лекция, добавлен 03.05.2016Реализация математической модели системы автоматизированного управления уровнем грунтовых вод, включая инструментарий мониторинга параметров польдерных систем. Решение обратных задач путем варьирования переменных до совпадения целевого функционала.
статья, добавлен 23.06.2018Полиномы Лежандра и Чебышева: отогональность полиномов и их формирование. Ортогональная система функций, построенная на основе полиномов Чебышева, нормирование системы функций, построенной на их основе. Примеры аппроксимации функций в среде MathCad'а.
курсовая работа, добавлен 09.06.2012Разложение резольвентной матрицы задачи Каратеодори в произведение множителей Бляшке-Потапова. Обобщенные параметры Шура. Решение интерполяционных задач для аналитических матриц-функций. Корректное определение суперпозиции дробно-линейных преобразований.
статья, добавлен 30.10.2016Представление булевых функций в совершенной дизъюнктивной нормальной форме. Многоступенчатое склеивание. Минимизация булевых функций. Карта Карно-Вейча для четырех переменных. Метод Квайна и Мак-Класки. Диаграммы Вейча, метод неопределенных коэффициентов.
курсовая работа, добавлен 22.06.2011- 88. Метод Ньютона
Общая характеристика метода Ньютона, знакомство с особенностями применения. Анализ способов записи формального представления по формуле Тейлора, основные проблемы. Рассмотрение процесса вычисления приближенного значения корня, использование выражений.
лабораторная работа, добавлен 02.10.2013 Аналитическая геометрия. Основные положения линейной алгебры. Использование систем линейных уравнений при решении экономических задач. Функции и теоремы математического анализа. Основные методы интегрирования. Дифференциальные и разностные уравнения.
учебное пособие, добавлен 12.03.2013Описание особенностей непрерывных частных производных заданной функции. Определение полного дифференциала данной функции. Изучение формул, когда х и у были функциями одной переменной. Расчет коэффициентов при дифференциалах независимых переменных.
реферат, добавлен 26.04.2014Построение теории экстремумов функций многих переменных, изложенной в учебнике по дифференциальному исчислению О. Коши. Впервые в задаче на экстремум функции он применил критерий Сильвестра положительной (отрицательной) определенности квадратичных форм.
статья, добавлен 05.12.2018Применение численных методов при решении задач, направленных на исследование определенных объектов математического анализа. Обоснование необходимости применения информационных технологий при реализации рассматриваемых вычислительных алгоритмов.
статья, добавлен 21.06.2018Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.
презентация, добавлен 22.03.2021Множество значений, принимаемых функцией в результате ее применения. Виды преобразований графиков функций. Предел монотонной и ограниченной последовательности. Интегрирование рациональных функций. Интегрирование по частям в определенном интеграле.
шпаргалка, добавлен 10.03.2014Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
курсовая работа, добавлен 25.04.2014Термин "комбинаторика" и его введение в математический обиход знаменитым Лейбницем. Использование комбинаторики при решении задач алгебры, геометрии, производящих функций. Основные правила – суммы и произведения. Формулы размещений без повторений.
реферат, добавлен 24.04.2015Рассмотрение задачи обеспечения инвариантности выходных переменных линейных динамических систем к внешним, неизмеряемым возмущениям в предположении, что условия согласования не выполнены. Синтез локальных обратных связей в классе разрывных функций.
статья, добавлен 02.11.2018- 98. Некоторые особенности численной реализации нелинейных интегральных моделей динамических объектов
Характеристика различных видов нелинейных интегральных динамических моделей, и также подходов к построению численных алгоритмов их компьютерной реализации. Выбор или разработка необходимого, часто специального, численного алгоритма для методов квадратур.
статья, добавлен 25.08.2016 Получение концепции алгебраических уравнений, удовлетворяющих коэффициенты. Рассмотрение особенностей интегральных задач Фредгольма. Характеристика использования симметричности ядра при решении заданий. Вычисление функций о собственных колебаниях систем.
курсовая работа, добавлен 13.01.2017Изучение правила замены переменной. Характеристика особенностей интегрирования по частям в определенном интеграле. Формулирование теорем. Нахождение первообразной подынтегральной функции и приращения первообразной. Вычисление определенного интеграла.
презентация, добавлен 18.09.2013