Модель машинного обучения для распознавания объектов по фотографиям
Теоритические аспекты и модели машинного обучения. Получение и интерпретация визуальной информации. Цели и задачи идентификации объектов по фотографиям. Использование искусственной нейронной сети Keras для распознавания ос и пчел от других насекомых.
Подобные документы
Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.
статья, добавлен 26.04.2019Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.
лабораторная работа, добавлен 20.02.2012Сбор и агрегация исторических данных о регулярных рейсах авиакомпаний. Особенность создания модели машинного обучения для предсказания вероятности отмены маршрута. Характеристика формирования ИТ-сервиса для предоставления доступа к предиктивной модели.
дипломная работа, добавлен 09.08.2018Применение СУБД для обработки большого объема данных в современных проектах машинного обучения и анализа данных. Анализ огромных объемов информации, используемых в данных приложениях. Обеспечение эффективной интеграции с приложениями и ресурсами данных.
статья, добавлен 14.12.2024Изучение информационных технологий управления с обратной связью и без неё. Контроль объектов обучения. Систематизация методов построения систем распознавания образов. Анализ условий их инвариантности по отношению к возмущениям объекта и внешней среды.
статья, добавлен 12.08.2016Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.
дипломная работа, добавлен 07.12.2019Разделимость описаний объектов из разных классов - метод успешного решения задачи классификации. Применение эволюционного подхода для преобразования входного пространства признаков с целью повышения вероятности обучения искусственной нейронной сети.
статья, добавлен 19.01.2018Понятие и области машинного обучения. Эволюционные модели и алгоритмы. Типология задач обучения по прецедентам. Байесовы (вероятностные) сети. Методы эвристической самоорганизации. Программно-прагматический и агентно-ориентированный подходы к обучению.
реферат, добавлен 07.04.2016Особенности применения нейронной сети с использованием библиотеки OpenCV для распознавания эмоций. Обучение нейронной сети, распознавание лиц из базы данных Yale Facesс помощью обучающего набора данных в рамках авторского проекта "Сурдотелефон".
статья, добавлен 25.02.2019Разработка программы распознавания действий человека. Работа с видеопотоком и классификатором. Выделение особенностей и структуры сверточной нейронной сети. Функции активации искусственного нейрона. Выделение контура из изображения и определение движения.
дипломная работа, добавлен 05.11.2015Изучение работы перцептрона для решения задачи распознавания символов. Выбор и обоснование структуры нейронной сети. Возможность улучшения свойств обобщения путем наращивания ее структуры. Анализ работы перцептрона при распознавании двух, четырех букв.
статья, добавлен 14.07.2016Процесс квалиметрико-компетентностной типизации инженерно-технических работников промышленных предприятий. Специфика применения нейронных сетей к решению задач идентификации многопараметрических социальных объектов. Пример формирования нейронной сети.
статья, добавлен 27.05.2018Применение методов машинного обучения с целью моделирования состояния рынка недвижимости Москвы. Изучение теории распознавания образов и теории вычислительного обучения в искусственном интеллекте. Проектирование и программирование явных алгоритмов.
диссертация, добавлен 02.09.2018- 39. Применение алгоритмов кластеризации k-means и g-means в задачах распознавания воздушных объектов
Характеристика процесса распознавания воздушных объектов, который имеет ряд трудностей. Анализ использования кластеризации семействами алгоритмов k-means и g-means. Исследование работоспособности метода на примере информации о воздушных объектах.
статья, добавлен 30.04.2018 Процедура сбора исходных данных в виде массива изображений для задачи распознавания туристически привлекательных объектов в городе. Процедура сбора данных и ее реализация с использованием API сервисов Flickr и Foursquare, файловой базы данных SQLite.
статья, добавлен 30.04.2018Разработка методики оценки действий оператора эргатической системы "Летчик–Самолет" на этапе посадки. Описание методов машинного обучения с учителем: метода опорных векторов и градиентного бустинга деревьев. Тестирование алгоритмов машинного обучения.
статья, добавлен 28.11.2016Общая характеристика статьи, описывающей алгоритм рекомендации перемещения метода с помощью машинного обучения. Рассмотрение основных особенностей применения методов машинного обучения для автоматической рекомендации рефакторинга "перемещение метода".
дипломная работа, добавлен 01.12.2019Распознавание символов по скелетному изображению, использование нейронной сети. Вычисление набора признаков скелета символа, его идентификации по результатам обучения нейронной сети. Устойчивость алгоритма к искажениям символов и параметрам шрифта.
статья, добавлен 25.09.2012Построение модели машинного обучения для обработки входящих запросов в службу технической поддержки. Решение задачи классификации запросов в службу технической поддержки при помощи оригинального алгоритма, учитывающего специфику предметной области.
статья, добавлен 25.04.2022Анализ мультимодальной информационной технологии для распознавания объектов, объединившей биометрические характеристики: голос и лицо. Разработка порога фильтрации для снижения шума в спектрограмме голоса и алгоритма расширения динамического диапазона.
статья, добавлен 29.09.2016Рассмотрение нейросетевых модификаций решения задач анализа изображений. Ознакомление со способами обучения нейронной сети для определения параметров прямой. Формирование виртуальной модели стенда. Характеристика процесса модификации детектора прямой.
статья, добавлен 19.01.2018Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.
статья, добавлен 01.03.2019Применение мультимодальной информационной технологии, которая объединила две биометрические характеристики: голос и лицо, для распознавания объектов. Алгоритм фильтрации для снижения шума в спектрограмме голоса и отображения деталей изображения лица.
статья, добавлен 28.11.2016Построение гибкой модели образовательных объектов. Разработка технологий автоматизации основных процессов корпоративного обучения. Использование шаблонов тестов. Механизм трансформации объектов. Выбор технической реализации систем дистанционного обучения.
автореферат, добавлен 25.07.2018Процесс создания и обучения нейронной сети для задачи классификации изображений собак и кошек с использованием TensorFlow и архитектуры MobileNetV2. Описание подготовки и предобработки данных, включая изменение размеров и нормализацию изображений.
статья, добавлен 05.09.2024